FLORIDA RUMINANT NUTRITION SYMPOSIA

2024

Proceedings

Today's Talk

- Cows are changing and we need to be conscious of this
- **Protein synthesis** is required for lactose synthesis, fatty acid synthesis and milk protein synthesis
- The concept of N efficiency is energy dependent and, in a ruminant, might be related more to urinary N excretion than intake to milk N
- Thus, the concept of N efficiency is not just related to milk protein output, it is related to energy corrected milk as all components require N

Efficiency of Use of Intake Nitrogen

- This is a tough metric for ruminants since they require non-protein N for rumen function
- When this is described for non-ruminants the N-currency is amino acids
- On farm N efficiencies (milk N:feed N) range from 20 to 32%
- Theoretical efficiency limit 40 to 45% in lactating dairy cattle (Van Vuuren and Meijs, 1987; Hvelplund and Madsen, 1995)
- Practical limit is ~38 to 40% (high cow groups are achieving this)
- Although it is an ambiguous metric, it can be useful if extended to whole body N metabolism

	ENU (g milk N/	100 g N intake)	3.5% Fat correct	ted milk (kg/day)
	Low	High	Low	High
U data set				
ENU (%)	21.0	32.0	24.8	28.7
3.5% FCM (l/day)	26.8	31.2	22.2	35.3
Forage (%)	66.5	56.9	67.4	52.6
Forage CP (%)	20.0	14.8	16.1	14.7
Forage NDF (%)	48.9	59.4	50.5	50.5
DMI (kg/day)	17.9	18.9	15.3	21.1
JS data set				
ENU (%)	22.0	32.8	25.5	29.8
3.5% FCM (l/day)	31.8	38.2	27.0	41.6
Forage (%)	53.4	52.6	56.2	51.9
CP (%)	17.9	15.4	15.6	17.4
NFC (%)	31.8	38.2	39.2	42.8
DMI (kg/day)	23.2	23.8	21.0	24.3

There are cows within groups achieving the theoretical limits of N efficiency

Hardie Family Farm, Lansing NY High group average production: 120 ± 35 lb/d Average DMI: 60.2 lb/d, 15.8% CP Average N efficiency: 38% (productive N:intake N)

Cows at high end of production: ~168 lb/d milk At estimated intake, N efficiency: 41%

Efforts to reduce excessive protein feeding

Morris et al., (2021) demonstrated that increasing urinary nitrogen (UN) excretion decreased metabolizable energy content of the diet as calculated from digestible energy:

- Urinary energy (UE) output was 1,390 to 3,160 kcal and UN was 85-220 g/d (20 to 60% of nitrogen intake)
- The best fitting equation was UE =14.6 ± 0.32 x UN (UE is kcals/g and UN is g/d)
- Urinary nitrogen needs to be accounted for when refining the calculation of dietary ME and lower nitrogen intake

CornellCALS College of Agriculture and Life Sciences

Efforts to reduce excessive protein feeding

- Nichols et al. (2022) review on urea recycling capabilities in ruminants:
 - Levels of rumen degradable protein should be optimized to capture ruminally recycled nitrogen → Improvements in nitrogen use efficiency
 - Excessive dietary urea feeding (>1% DM) elicits deleterious effects on animal (hypophagic effects, ammonia toxicity) and may lead to sequestered urea recycling
 - Increases in post-ruminal protein supply should help improve endogenous urea supply through hepatic production

Review: Unlocking the limitations of urea supply in ruminant diets by considering the natural mechanism of endogenous urea secretion K. Nichols*, I.P.C. de Carvalho, R. Rauch, J. Martín-Tereso Traw Martian 860, P.D. Bur 228, 300 C. Amerijant, the Kehrlands

Formulating closer to nitrogen and amino acid requirements, reducing urinary N excretion, and reliance on endogenous urea recycling leads to improvements in energetic and nitrogen efficiency

CornellCALS College of Agriculture and Life Sciences

Urea-N entry rate and gastrointestinal urea-N entry rate for each experimental unit across all dietary treatments differing in dietary CP (15.3% and 16.7%), starch, and Rumensin inclusion fed to dairy cattle and continuously infused with ¹⁵N¹⁵N urea-N.

Improving energetic efficiency through nitrogen reduction Moving from "most cattle" from 0.7:1.0 on productive N:urinary N to a 1:1 ratio results in a 660 g- 610 g = 50 g reduction in intake N and a proportional reduction in urinary N (1.5 lb soybean meal equivalent)

- Using the equation from Morris et al. 2021, reducing N excretion by 50 g would result in a retention of energy of 0.73 Mcals
 - · Could be partitioned to milk or milk components
 - Reduce the environmental impact of milk production
 - Reduce feed costs improving IOFC
 - Results in an improvement in energetic efficiency of cattle

What are the limits? Two world record holders as examples

Porspecti												
i eispeut	ve											
 Based or capacity There perform 186 	1 eva for m are c ming to 21	luation iilk yie cows c herds 4 lb/d	ns by Id fo on co that (>4	/ J. C r Hols mme are p 4,000	ole a steins rcial beaki 00 lb/	ind s is farr ng i lact	C. D app ns ii in m atio	Dech roxi n Ce ilk y n)	now, mat entra vield	, the tely al N l be	e gen 75,0 NY in etwee	etic 00 lb high n
• My persp	oectiv	'e is th	nat m	any o	cows	in a	a he	rd h	ave	e th	is cap	oacity.
• Leads to the question, what are we doing, and when, that either detracts from or fails to "turn on" that ability and when is that communicated to the animal?												
Cornell CAL	S College of	of Agriculture										
		sciences										
		• 41	150	lla						_		
Cow 602 4 th lactati record	8 on	prot	ein ir	io mii 367 erage	к, 1,7 days d 103	of la	b fat actat d for	, 1,3 ion the	370 I lacta	b atio	n	
Cow 602 4 th lactati record	8 on 4	prot • Sh	, 100 ein ir ne ave	sid mil	к, 1,7 days d 103	of la	b fat actat d for	the	370 I lacta	b atio	n	_
Cow 602 4 th lactati record	8 on	Prot • Sh CALF1 PCTF	7980 4.0	SID PCTP	к, 1,7 days d 103 ^{11н1166} 3.	of la blb/c	b fat actat d for	the 5252	370 l lacta	b atio	n	
Cow 602 4 th lactati record	8 00 4 89 FDAT	Prot • Sh calf1 PCTF CDAT	7980 4.0	SID PCTP	к, 1,7 days d 103 ^{11н1166} 3. тотг т	39 I of la Ib/c	b fat actat d for	the 5252 131 RELV	B70 I lacta	b atio	DDRY	_
Cow 602 4 th lactation record	8 00 4 89 FDAT 9/17/18	Prot • Sh CALF1 PCTF CDAT 11/15/18	7980 4.0 DDAT 6/21/19	SID PCTP 21030	к, 1,7 days d 103 ^{11н1166} 3. тотғ т ⁸⁹²	5 DII 5 DI	b fat actat d for	the 5252 131 RELV 101	B70 I lacta	DIM 277	DDRY 56	_
Cow 602 4 th lactati record	8 ON 4 89 FDAT 9/17/18 8/16/19 7/12/20	Prot • Sh CALF1 PCTF CDAT 11/15/18 10/10/19 10/15/20	7980 4.0 DDAT 6/21/19 5/29/20	ID mil 367 erage SID PCTP ТОТМ 21030 29990 24100	к, 1,7 days d 103 ^{11н1166} 3. тотя т ⁸⁹² 1166	39 I of la b/c 5 DII 3 REI 698 952	b fat actat d for 20 10 305ME 31530 37990	, 1,3 ion the 5252 131 RELV 101 122	B70 I lacta	DIM 277 287 230	DDRY 56 44	_

- 41570 1669 1285 41890 131

167930 6881 5451

149 340

0

тот

5 5-10 9/13/22 2/09/23

3 Ia	rc aC	ctat	tion	•	•	• A	veraç	ged 1	1	7 lb/0	d	4	404-0	day I	acta	tion	
PE	N		3	C	ALF1		7962	SID		11H118	15	DI)	5582			
MI	LK		130	P	CTF		5.4	PCTP		3	8.5	RE	LV	119			
L#		AGE	FDAT		CDAT		DDAT	тотм	1	TOTF	тот	ГР	305ME	RELV	DOPN	DIM	DDRY
	1	1-10	7/04/19)	10/03	/19	5/08/20	305	570	1318	9	997	42570	136	91	309	56
	2	2-10	7/03/20)	10/23	/20	6/04/21	391	.00	1747	1	322	43940	136	112	336	51
	3	3-11	7/25/21	L	2/13/2	22	9/02/22	470	60	2144	1	653	41870	127	203	404	78
	4	5-2	11/19/2	22		-		- 315	5 <mark>8</mark> 0	1325	1	015	38090	119	273	273	0
тот								1483	10	6534	4	987					

		3 rd Ia	ctat	ion	•	124 prote 417 (lb n ein day	nilk p v lacta	er da ation	ay -	- 4%	6 Fat	, 3.23	8%	
PEN		3	CALF	L	0	SID	:	11H1146	2 DI	D		5281			
MIL	ĸ	120	PCTF		4.5	PCTP		3.	4 RI	ELV		126			
#	AGE	FDAT	CD	AT	DDAT	тот	М	TOTF	тотр	30	5ME	RELV	DOPN	DIM	DDRY
1	1-11	11/02/	18 2/1	9/19	9/27/19	34	1690	1181	106	2 4	41900	134	109	329	61
2	2-11	11/27/	19 4/2	25/20	12/04/2	0 42	2150	1536	130	3 4	40830	125	150	373	59
	4-1	2/01/2	1 8/2	29/21	3/25/22	51	1600	2062	166	9 4	42410	134	209	417	64

Swine Requirements: Lysine as a function of Energy and Other Essential AA as function of Lysine

Table 1. Minimum stand	lardized ile	eal digestib	ole lysine ar	nd amino ao	cid to lysine	e ratio for gr	owing pigs and	d sows
		Gro	wing pigs	weight rang	e, lb		So	ws ⁴
SID amino acids ¹	15 to 25	25 to 55	55 to 130	130 to 175	175 to 220	220 to 285	Gestating	Lactating
Lysine, % ²	1.35	1.25	1.08	0.88	0.78	0.70	0.60	1.05
Amino acid to lysine ratio Methionine	, % ³ 28	28	28	28	28	28	28-29	28-29
Methionine + Cysteine	56	56	56	56	57	58	68-70	53-54
Threonine	62	62	62	62	63	64	74-76	63-64
Tryptophan	19	19	18	18	18	18	19-21	19-21
Isoleucine	52	52	52	52	52	52	58	56
Valine	67	67	68	68	68	68	71-76	64-70

¹Minimum levels based on the NRC (2012) ingredient loading values.

²Minimum lysine levels considering a diet with 1,150 kcal NE/lb for growing pigs, 1,130 kcal NE/lb for gestating sows, and 1,160 kcal NE/lb for lactating sows.

³Minimum ratios to achieve approximately 95% of maximum growth performance. Minimum ratios of threonine, tryptophan, isoleucine, and valine can be greater depending on diet formulation.

⁴Data on amino acid requirements for contemporary sows is limited.

- These are adjusted based on genotype thus the relationship between Lysine and energy changes with increased capacity for growth
- What about cows and their increased capacity for components?

Optimum Supply Of Each EAA Relative To Metabolizable Energy – CNCPS v7.0 – Approach incorporates all productive functions

AA	R ²	Efficiency from our evaluation	Lapierre et al. (2007)	g AA/ Mcal ME	% EAA					
Arg	0.81	0.61	0.58	2.04	10.2%					
His	0.84	0.77	0.76	0.91	4.5%					
lle	0.74	0.67	0.67	2.16	10.8%					
Leu	0.81	0.73	0.61	3.42	17.0%					
Lys	0.75	0.67	0.69	3.03	15.1%					
Met	0.79	0.57	0.66	1.14	5.7%					
Phe	0.75	0.58	0.57	2.15	10.7%					
Thr	0.75	0.59	0.66	2.14	10.7%					
Trp	0.71	0.65	N/A	0.59	2.9%					
Val	0.79	0.68	0.66	2.48	12.4%					
	Lys and Met req	uirements 14.9%	%, 5.1% - Schwal	b (1996) 2.9	:1					
	Lys and Met requirements 14.7%, 5.3% - Rulquin et al. (1993) 2.77:1									

29

Amino Acids and De Novo FA Synthesis

- Lys increased enzymes related to de novo FA synthesis (ACS, ACC, FAS) through upregulation of FABP and SREBP1 (Li et al., 2019)
 - Further increased when supplemented with palmitic acid and oleic acid
- Additionally, Met and Leu increase expression of SREBP1– important regulator of enzymes for milk FA synthesis (Li et al., 2019).
- Arg increased de novo and mixed FA synthesis and expression of ACC, SCD, DGAT1 (Ding et al., 2022)

Fatty Acid Synthetase (FAS)

- FAS synthesizes de novo FA by elongating FA carbon chain
- Active sites with AA essential for function and transfer of intermediates during elongation of de novo FA
 - His, Lys, Ser, Cys (Smith et al., 2003; Wettstein-Knowles et al., 2005)
- FAS expression decreased in His- and Lys-deficient human liver cell medium (Dudek and Semenkovich, 1995)
 - This was reversible when His and Lys were reintroduced
- Expression of FAS increased by adding both NEAA and EAA compared each treatment individually (Fukuda and Iritani, 1986)
 - FAS complex likely has requirement for both types of AA

31

Review of recent experiment evaluating nutrient use efficiency
Dose titration of rumen modifier – nothing to do with amino acids, except the diets were formulated using the latest information related to AA levels
192 cows were used in a replicated pen study
16 cows per pen, milked 3x per day
Prior to the experiment, the cows were producing 42 kg, 4.1% fat and 3.1% true protein

Benoit et al., JDS abstract 2022

	DM kg
Corn silage	8.85
Haylage - MML	4.90
Corn ground fine	4.54
SBM	1.72
SoyPass	1.45
Citrus Pulp	1.13
Wheat midds	1.13
Dextrose	0.40
Blood meal	0.25
Bergafat 100	0.15
Energy Booster 100	0.15
Sodium bicarb	0.10
Smartamine M	0.03
Smartamine ML	0.03
Levucell SC	0.01
Vitamins and Minerals	0.41
Total	25.27

Rumen modifier study diet c	hemistry – formulated
DM, %	45.1
СР, %	15.75
Sol CP, %CP	31.5
aNDFom, %	31.6
Sugar, %	4.92
Starch, %	26.33
EE, %	4.4
ME, mcal/kg	2.65
ME, Mcal @25.5 kg DMI	68
Forage, % DMI	54.3
Forage, %BW	0.93
Methionine, g/Mcal ME	1.19
Lysine, g/Mcal ME	3.03
Methionine, g	82
Lysine, g (methionine x 2.7)	222

Diet/Intake related information – Methionine and Lysine levels

Cows consumed approximately 71-72 mcals per day

Methionine @ 1.19g/Mcal = 1.19* 71.5 = 85 g

Lysine @ 2.7 times Met = 85g * 2.7 = 229 g

1.71

2.9

693

9.13

Histidine similar to Methionine

Feed Efficiency,

ECM/feed

BCS

BW, kg

PUN, mg/dL

These levels are what we consider the true requirement to be based on the last 10 years of research

Meeting the requirements should improve energetic efficiency and milk component yields

35

Milk, o four le	energy correcte evels of rumen i	d milk, f modifier	eed effi	ciency a	nd body	weigh	nt of cov
			Treat	tment			
	ltem	0	11g	14.5g	18g	SEM	P-Value
	DMI, kg/d	26.9	26.8	26.7	27.7	0.31	0.21
	Milk Yield, kg/d	39.1	39.9	39.6	39.6	0.4	0.33
	ECM, kg/d,	45.9	46.9	47.1	46.8	0.51	0.11

1.76

3.0

693

9.19

1.70

2.9

692

8.88

0.02

0.2

2.3

0.16

0.93

0.7

0.96

0.36

Benoit et al., 2022

1.74

3.1

690

9.23

Milk fat, protein and urea nitrogen of cows fed four levels of rumen modifier

		Trea	atment			
ltem	0	11g	14.5g	18g	SEM	P-Value
DMI, kg/d	26.9	26.8	26.7	27.7	0.31	0.21
Milk Yield, kg/d	39.1	39.9	39.6	39.6	0.4	0.33
ECM, kg/d,	45.9	46.9	47.1	46.8	0.51	0.11
Milk fat, %	4.60	4.67	4.72	4.67	0.05	0.2
Milk fat, kg	1.79	1.83	1.85	1.83	0.02	0.02
Milk true protein, %	3.35	3.38	3.37	3.39	0.01	0.07
Milk protein, kg	1.30	1.33	1.32	1.33	0.01	0.15
MUN, mg/dL	8.92	10.20	9.65	9.56	0.12	< 0.01
					Ben	oit et al., JD

37

Fatty	hiad	nrofilo	of milk	from	COME	fod	four		of	rumon	modifier	
гац	/ aciu	prome		пош	COWS	ieu	IUUI	ieveis	0I	rumen	mounier	

		Trea	tment			
Item	0	11g	14.5g	18g	SEM	P-Value
De novo fatty acid, g/100g	1.131	1.157	1.168	1.156	0.01	0.03
De novo fatty acid, kg	0.44	0.45	0.46	0.46	0.005	0.32
Mixed fatty acid, g/100g	1.856	1.881	1.918	1.897	0.02	0.02
Mixed fatty acid, kg	0.73	0.74	0.75	0.75	0.009	0.39
Preformed fatty acid,	1.34	1.33	1.38	1.35	0.02	0.23
g/100g						
Preformed fatty acid, kg	0.52	0.52	0.54	0.53	0.007	0.29
Fatty acid chain length	14.6	14.5	14.5	14.5	0.01	0.83
Double Bonds	0.23	0.23	0.23	0.23	0.002	0.42

Benoit et al., 2022

Effect of Rumen Protected Methionine and Lysine on Energy Corrected Milk Yield (and don't forget about Histidine...)

- 144 cows assigned to a replicated pen study
- Three levels of rumen protected Methionine
- Lysine was held constant at 3.2 g metabolizable AA per Mcal ME
- Histidine was similar to the highest Methionine level
- Methionine was fed at 0, 1.05 and 1.19 g metabolizable Met per Mcal ME
- 14-day covariate, 84-day treatment; 75% multiparous, 25% primiparous cattle per pen

Danese et al. unpublished

144 cows, replicated pen, 16 cows/pen	Diet, g Metabolizable Met/Mcal ME				
Parameter	0.86	1.05	1.19	SEM	P value
Body Weight, kg	698	705	701	3.3	0.30
Delta BW, kg	16.4	23.9	9.8	6.8	0.35
Dry Matter Intake, kg	26.4	26.5	26.1	0.3	0.59
Milk Yield, kg	44.6	45.3	44.8	0.38	0.38
ECM, kg	48.8 ^a	50.2 ^b	50.4 ^b	0.44	0.02
ECM to DMI	1.87	1.88	1.92	0.017	0.21
Milk True Protein, g/100g Milk	3.09ª	3.24 ^b	3.34 ^c	0.010	< 0.01
Milk True Protein, kg	1.38ª	1.46 ^b	1.49 ^b	0.011	< 0.01
Milk Fat, g/100g Milk	4.21 ^a	4.25 ^a	4.36 ^b	0.026	< 0.01
Milk Fat, kg	1.88	1.92	1.94	0.023	0.16
MUN, mg/dL	11.20	11.44	11.09	0.120	0.12

Diet, g Metabolizable Met/Mcal ME					
Milk Fat, g/100g Milk	0.86	1.05	1.19	SEM	P value
De novo	1.14ª	1.17 ^b	1.20 ^b	0.010	< 0.01
Mixed	1.65×	1.67 ^{xy}	1.70 ^y	0.015	0.07
Preformed	1.16	1.15	1.19	0.013	0.20
Milk Fat, % Milk Fat					
De novo	28.79ª	29.33 ^b	29.34 ^b	0.088	< 0.01
Mixed	41.83	41.61	41.56	0.148	0.40
Preformed	29.33	29.08	29.07	0.166	0.43
Danese et al. unpublished					

43

Diet, g Metabolizable Met/Mcal ME					
	0.86	1.05	1.19	SEM	P value
N Intake, g	669	671	673	5.9	0.91
Productive N, g	235ª	241 ^b	250 ^c	1.7	< 0.01
Urinary N, g	193 ^y	189 ^{×y}	181 [×]	3.6	0.09
Productive:Urinary N	1.22	1.28	1.38		

At the 1.19 supplementation level, the difference between milk volume and ECM was 9.4 to 13 lb demonstrating a 4% increase in energetic efficiency

In this study, between the same treatments, the increase in N efficiency was 6.4%

Observations from these studies

- Milk components can be greatly enhanced even in mid-lactation if requirements for various nutrients are met
- Data demonstrate that meeting the amino acid requirements can enhance energetic efficiency as much or more than N efficiency
- Holstein cattle can produce milk fat like Jersey cattle if fed an appropriate diet meeting the requirements
- These cows are more environmentally efficient because they are producing more components per unit of intake reducing the intensity of greenhouse gas emissions

45

Some Steps to Optimize Energetic Efficiency

- Determine the most limiting nutrient energy or protein do cows and model agree?
- Evaluate the rumen N balance and urinary N excretion if high, then work to reduce the soluble protein – within CNCPS rumen NH₃ balance between 120-140%
- If grams MP is in excess, then decrease MP from feed in small increments
- Once you have ME and MP in balance and are happy with rumen N balance, focus on AA
- Met use 1.15-1.19 g MP Met per Mcal ME (CNCPS v6.55)
- Lys maintain a Lys:Met of ~ 2.7:1
- Pay attention to aNDFom digestibility and allocate the highest digestibility forages to the fresh and high cows
- Don't overfeed fatty acids, add some sugar and use high digestible aNDFom

Thank you for your attention and for all the students who helped develop this work and the sponsors who keep it going.

Stable Isotope Results –	Prestegaard and	Fernandes	Virginia Tec	h)
			0 -	

RP-AA	Plasma Appearance (%) ¹	Bioavailability (%) ²	
AminoShure [®] -XM	51.2	55.0	
RP-Lysine Prototype 1	59.8	64.0	
RP-Lysine Prototype 2	44.0	47.1	
RP-Histidine Prototype 1	68.7	73.5	
RP-Histidine Prototype 2	51.9	55.6	

¹Percent of AA appearance in plasma. Calculated as the grams of AA absorbed into blood per 100 grams of AA fed ²Predicted bioavailability corrected for 7% loss during first pass

12

Conclusions ΓF Several Valid Methods of Assessment • Variance is not equal across methods - Reduced by greater Ingr feeding and replicating observations - Milk Protein Response • ± 30% if 90 g Met/d fed • Double Lys fed for similar error Blood Concentrations • ± 12% units for Met at 100 g/d • ± 18% units for Lys • e.g. 70% bioavailabilty ± 18% - Se-Met Dilution • ± 15% units • Met only – Isotope Dilution • ± 12% Units All EAA

Histidine – a limiting amino acid for dairy cows

Alex N. Hristov Distinguished Professor, Department of Animal Science The Pennsylvania State University

35th Annual Florida Ruminant Nutrition Symposium, Feb 26 - 28, 2024, Gainesville, FL

PennState College of Agricult	tural Science	es			Räisänen et al., 202
ł	list	idine	rese	arch	ו
Table 1. Characterization of put	blications used i Design ¹	n the meta-analysis Method of His supplementation ²	Basal diet	MP-level ³	Other supplemental AA
Vanhatalo et al. (1999)	LS	Infusion	Grass silage	MPD	Lys, Met
Kim et al. (1999)	LS	Deletion	Grass silage	MPA	Lys, Met, Trp
Kim et al. (2000)	LS	Infusion	Grass silage	MPA	Lys, Met
Korhonen et al. (2000)	LS	Infusion	Grass silage	MPA	
Kim et al. (2001)a [*]	LS	Infusion	Grass silage	MPA	
Kim et al. $(2001)b$		Infusion	Grass silage	MPA	Lys, Met, Trp
Huhtanen et al. (2002)a		Infusion	Grass silage	MPD	Leu
Huntanen et al. (2002)b	LS	Deletier	Grass shage	MPD	Levi Levi Met
fadrova et al. (2012)	LO	Deletion DDU:-	Corn shage	MPD	DDL, DDM-45
Ciellenge et al. (2012)	DCD	RP HIS DDUia	Corn silage	MPD	DDI va DDMat
Ciallongo et al. (2015)	DCB	DDHie	Corn silage	MDA	DDI ve DDMot
Ciallongo et al. (2017)	DCB	Recal dict ⁶	Corn silage	MDA	DDI ve DDMot
Zang et al. (2017)	LS	BDHie	Corn silage	MPA	RPM _{ot}
Morris and Kononoff (2020)a	LS	DDHie	Corn silage	MDA	Tel Met
Morris and Kononoff (2020)h	LS	RPHis	Corn silage	MPA	BPL _{NS}
Lapierre et al (2021)a	LS	Deletion	Corn silage	MPD	Free AA casein profile
Lapierre et al. (2021)b	LS	Deletion	Corn silage	MPD	Free AA, casein profile
Räisänen et al. (2021a)	LS	RPHis	Corn silage	MPA	RPLvs, RPMet
Räisänen et al. (2021b)	LS	RPHis	Corn silage	MPD	RPLvs, RPMet
(=/	DCD	DDU	Com ciloro	MDA	DDL vo DDMot
Räisänen et al. (2022)a	RCB	REIIS	Corn snage	IVII IN	nr hys, nr met

Histidine work at Penn State J. Dairy Sci. 99:6702–6713 http://dx.doi.org/10.3168/jds.2015-10673 © American Dairy Science Association[®], 2016. J. Dairy Sci. 106 https://doi.org/10.3168/jds.2022-22966 © 2223, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the Am This is an open access article under the CC BY license (http://creativecommons.or Effects of slow-release urea and rumen-protected methionine and on mammalian target of rapamycin (mTOR) signaling and ubiquiti proteasome-related gene expression in skeletal muscle of dairy co ected methionine and histidine Lactational performance effects of supplemental histidine in dairy cows: A meta-analysis adri: *†¹ F. Giallongo.‡ A. N. Hristov.‡ J. Werner,§ C. H. Lang.# C. Parys, II B. Saremi, II and H. Sau the of Animal Science, Physiology and Hygiene Unit, University of Born, 53115 Born, Gernary S. E. Rillatinen ^{1,2} O. H. Laplarra, ² O. W. J. Price, ⁴ O. and A. N. Hristov,¹ O. Destiment of Animal Science, The Penerybuika State University, State Collage, FA 18902 (TH Zbrich, Department of Environment Science, Institute Adjacutural Sciences, Zainch 8092, Swiz ³Agriculture and AgriFood Canada, Shetbrooke, D.C. Canada J1M OS ⁴Satistical Programs, University of Idato, Mescow, ID SSM science, and Science, and ram. The Pennsylvania litate University University Park 16802 and Molecular Physiology, Penn State College of Medicine, Hentwy, PA 17033 o Ombel, Rodenbacher Chaussee 4, 63457 Hanau, Germany J. Dairy Sci. 95:6042–6056 http://dx.doi.org/10.3168/jds.2012-5581 @ American Dairy Science Association⁶, 2 J. Dairy Sci. 99:4437-4452 http://dx.doi.org/10.3168/jds.2015-10822 © American Dairy Science Association[®], 2016. 2012 Rumen-protected lysine, methionine, and histidine increase Energies of rumen-protected methionine, lysine, and histidine yield in dairy cows fed a metabolizable protein-deficient die on lactation performance of dairy cows C. Lee, * A. N. Hristov, ** T. W. Cassidy, * K. S. Heyler, * H. Lapierre, † G. A. Varga, * M. J. f. Gallongo, * M. T. Harper, * J. Oh, * J. C. Lopes, * H. Lapierre, † R. A. Patton, ‡ C. Parys, § I. Shin and C. Parys# and C. Parys# ce. The Dennestrania State Liniversity Liniversity Dark 18909 J. Dairy Sci. 100:2784–2800 https://doi.org/10.3168/jds.2016-11992 • American Dairy Science Association[®], 2017. J. Dairy Sci. 98:3292-3308 http://dx.doi.org/10.3168/jds.2014-8791 © American Dairy Science Association®, 2015. Histidine deficiency has a negative effect on lactational Effects of slow-release urea and rumen-protected meth performance of dairy cows and histidine on performance of dairy cows F. Giallongo,* M. T. Harper,* J. Oh,* C. Parys,† I. Shinzato,‡ and A. N. Hristov*1 F. Giallongo,* A. N. Hristov,*¹ J. Oh,* T. Frederick,* H. Weeks,* J. Werner,† H. L. Weiss,* J. Werner,† Weiss,* J. Werner,† Weiss,* J. Werner,† H. L. Weiss,* J. Werner,† Weiss,* J. Werner,† H. L. Weiss,* J. Weiss,* J. Werner,† H. L. Weiss,* J. W hed by Elsevier Inc. and Fass Inc. All rights Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 2. Metabolizable protein-deficient diet J. Dairy Sci. 104:9902–9916 https://doi.org/10.3168/jds.2021-20188 © 2021 American Dairy Science Association®, Publi -cu too on[®], Published by Elsevier Inc. and Fass Inc. All rights 5. E. Räisänen,¹ C. F. A. Lago,^{1,2} M. E. Fetter,¹ A. Melgar,^{1,3} A. M. Pelaez,^{1,4} H. A. Stefenoni,¹ D. E. Was Oneggyer of Anama Data Universitation and an University of the Anama Data University Data (University Park 1997) Histidine dose-response effects on lactational performance of the second and plasma amino acid concentrations in lactating dairy cows: 1. Metabolizable protein-adequate diet Cowst: 1. Metabolizable protein-adequate diet S. E. Risianen, ¹C. F. A. Lago, ^{1,3}J. Oh, ^{1,3}A. Melgar, ¹A. Medikov, ^{1,4}X. Kedikov, S. E. Raisänen, ¹* C. F. A. Lage, ¹²† C. Zhou, ¹³ A. Meigar, ¹⁴ T. Silvestre, ¹ D. E. Wasson, ¹ S. F. Cueva, J. Werner, ¹T. Takagi, ⁴ M. Miura, ¹ and A. N. Hristov¹ ‡ Department dramat Educor. The Prencyland State University, Jones 16002

	PennState	l Sciences					
	conege of Agricultura			-	• - •	•	
	NASEN	1 (202	21) A	A comp	osition	OŤ	
		•			_		
		mic	rohia	al nrote	in		
	g AA _{corr} /100 g CP			g AA _{corr} /100 g TP ^a		g AA	00 g TP ^b
AA	Duodenal Endogenous	Microbial ^c	Scurf	Whole Empty Body	Metabolic Fecal	Milk	
Ala	4.69	7.38	16% /		6.32	3.59	
Arg	4.61	5.47	10%10	Wel His	5.90	3.74	
Asx	4.75	13.39	tha	n Met	7.56	8.14	
Cys	2.58	2.09	7/	1.74	3.31	0.93	
Glx	11.31	14.98	14.69	15.76	15.67	22.55	
Gly	5.11	6.26	21.08	14.46	8.45	2.04	
His	2.90	2.21	1.75	3.04	Only 4%	2.92	
Len	4.09	0.99	2.96	3.69	difference	6.18	
Leu	6.23	9.25	5.64	7.00	7.61	8.82	
Met	1.26	2.63	1.40	2 37	1.73	3.03	
Phe	3.98	6.30	3.61	4.41	5.28	5.26	
Pro	4.64	4.27	12.35	9.80	8.43	10.33	
Ser	5.24	5.40	6.45	5.73	7.72	6.71	
Thr	5.18	6.23	4.01	4.84	7.36	4.62	
Trp	1.29	1.37	0.73	1.05	1.79	1.65	
Tyr	3.62	5.94	2.62	3.08	4.65	5.83	
Val	5.29	6.88	4.66	5.15	7.01	6.90	
							<u> </u>

aș,	PennState College of Agricul	tural Sciences	0021 cin	nulatio	96
	Mature, 700 kg	BW Holstein cow, 1	00 DIM, 55 kg milk/	d, 3.30% fat, 2.80% 1	1 5 FP, 28 kg/d DMI
	Diet CP, %	Proportion of microbial MP	Total mHis, g/d	mHis efficiency (target is 0.75)	N excretions, g/d
	15.1	0.58	56	1.04	402
	17.2	0.53	67	0.87	488
	18.4	0.51	73	0.80	539
	0 0 0 0	.7		-	
	0	.3			
	0	.2			
	0	.1	Micr Prot contr to MP flo 1% CP 17.2% CP 18	ow .4% CP	

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table 4. Effect size ¹ and h	e ricultura	ty for the effect	Lactatic histidin s. E. Räisä "Department "ETH Zurich, I "Agnoutture ar "Statistical Pro-	J. Dairy Sci. 108:67 https://doi.org/10.3 @ 2023, The Authors. Pu This is an open access a onal performan e in dairy cow nen. ¹³ H. Lapierre Animal Science, The Pa- peratiment of Environmer id Agri-Food Canada, Shie grams, University of Idah	216-6231 168/jds.2022-22966 bished by Elsevier Inc. ar ricicle under the CC BY lice ncce effects of s: A meta-ana s² W. J. Price ⁴ or insylvariai State Universit at Science, Institute of A rbrooke, GC, Canada J1B o, Moscow, ID 83844 lactational perfor:	d Fass Inc. on behalf nrse (http://creativeco supplement lysis and A. N. Hristov y. State College, PA 1 rock tock	of the American Dairy S mmons org/licenses/by/ al 1 • • • 8002 urich 6002, Switzerland COWS	clience Association ⁶
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					Effect size and 95	5% CI		Hetero	geneity
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Item	\mathbb{N}^2	Random	SE	Lower limit	Upper limit	P-value	Q-value ³	P-value
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DMI, kg/d	22	0.241	0.097	0.050	0.432	0.01	21.4	0.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Milk vield, kg/d	22	0.888	0.192	0.512	1.26	< 0.001	69.4	< 0.001
	ECM yield, ⁴ kg/d	14	0.187	0.115	-0.039	0.413	0.11	8.78	0.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Milk true protein, %	22	0.246	0.104	0.041	0.450	0.02	23.9	0.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Milk true protein, kg/d	22	0.674	0.147	0.386	0.962	< 0.001	42.8	0.003
Milk fat, kg/d 22 -0.009 0.096 -0.197 0.178 0.92 12.6 0.92	Milk fat. %	22	-0.427	0.119	-0.660	-0.195	< 0.001	29.7	0.10
	Milk fat, kg/d	22	-0.009	0.096	-0.197	0.178	0.92	12.6	0.92
Milk lactose, % 20 0.004 0.121 -0.234 0.241 0.97 27.1 0.10	Milk lactose, %	20	0.004	0.121	-0.234	0.241	0.97	27.1	0.10
Milk lactose, kg/d 20 0.425 0.101 0.227 0.623 <0.001 43.7 0.00	Milk lactose, kg/d	20	0.425	0.101	0.227	0.623	< 0.001	43.7	0.001
Plasma His, m <i>M</i> 22 1.81 0.251 1.39 2.37 <0.001 92.3 <0.00	Plasma His, mM	22	1.81	0.251	1.39	2.37	< 0.001	92.3	< 0.001

Number of studies

³Chi-squared (Q) test for heterogeneity and variation among the study level.

⁴Six studies were excluded from the analysis due to lack of ECM data and respective SD in the publication.

- Long-term trials showed that supplementation of such diets with rumen-protected His increased or tended to increase milk yield and milk protein percent and yield, partially through increasing DMI
- Our data suggest dHis recommendations at around 3.0% of MP, or 70-74 g/d
- Watch for false bioavailability data
- Order and degree of AA limitation will likely depend on EAA profile of RUP
- The effects of low-protein, high-starch diets on enteric methane emission and overall carbon footprint of milk needs to be further examined

Protein Nutrition of Transition Cows and Amino Acid Balancing in Early Lactation

José Eduardo P. Santos University of Florida

Gainesville, USA

1

SCIENCES

NASEM 2021
 ✓ Metabolizable protein needed for gravid uterus accretion ✓ 125 g of net protein per kg of gravid uterus gain ✓ 230 d of gestation = 190 g/d ✓ 250 d of gestation = 260 g/d ✓ 270 d of gestation = 360 g/d
✓ Efficiency of incorporation of MP into net protein (NP) in the gravid uterus is 33%
 ✓ At 250 days of gestation, the cow would need ✓ 480 g of MP for maintenance ✓ 260 g of MP for pregnancy ✓ Total = 740 g/d of MP (410 g/d of NP) ✓ Plus any additional MP for frame growth replenishment of body reserves
 ✓ At 270 days of gestation, the cow would need ✓ 480 g of MP for maintenance ✓ 381 g of MP for pregnancy ✓ Total = 864 g/d of MP (535 g/d of NP) ✓ Plus any additional MP for frame growth replenishment of body reserves

Factorial Protein Needs of a Prepartum Cow

Cow: 50-mo old Holstein, 270 d of gestation, 720 kg BW, 0.1 kg/d frame growth, eating 12.5 kg of DM with 44% NDF

Heifer: 22-mo old Holstein,	270 d of gestation	, 620 kg BW, 0).8 kg/d frame growth,	eating 11.0 kg of E	OM with
44% NDF					

	Net p	rotein	Metaboliza	Metabolizable protein	
Item	Heifer	Cow	Heifer	Cow	
Scurf, g/d	8	9	12	13	
Endogenous urinary, g/d	205	240	205	240	
Metabolic fecal, g/d	138	158	200	230	
Frame growth, g/d	77	8	112	12	
Body reserves	0	0	0	0	
Pregnancy	119	126	360	381	
Total	547	541	890	876	

Descriptive Statistics of Protein Inputs

Item	TRT Means, n	Mean	SD	Median	Min	Max
NE _L , Mcal/kg	114	1.59	0.10	1.62	1.25	1.73
CP, %	114	14.3	2.1	14.4	9.0	20.9
RDP, % DM	114	9.6	1.2	9.5	5.5	12.2
RUP, % DM	114	4.7	1.4	4.6	2.7	9.0
CP intake, g/d	114	1,681	407	1,648	745	2,482
Metabolizable, g/d						
Total MP	114	1,100	290	1,091	463	1,733
Microbial CP	114	603	119	601	257	876
RUP	114	446	190	425	159	937
Met	114	22	6	21	9	40
Lys	114	76	18	75	31	120
Total EAA	114	505	125	505	211	766

	Nullipa	arous	Parc	ous
Item	TRT Means, n	Mean ± SD	TRT Means, n	Mean ± SD
Prepartum				
DMI, kg/d	12	10.1 ± 0.8	76	12.4 ± 2.2
BW, kg	12	606 ± 25	66	700 ± 50
Postpartum				
DMI, kg/d	6	17.0 ± 1.6	70	20.7 ± 2.7
Yield, kg/d				
Milk	25	31.6 ± 3.2	89	38.5 ± 4.6
FCM	25	32.0 ± 3.5	89	40.5 ± 4.6
Milk fat				
%	25	3.65 ± 0.23	89	3.88 ± 0.38
kg/d	25	1.14 ± 0.12	89	1.48 ± 0.18
Milk protein				
%	25	3.21 ± 0.11	87	3.07 ± 0.17
kg/d	25	1.01 ± 0.11	87	1.18 ± 0.12
BW, kg	8	542 ± 26	82	622 ± 31

Conclusion and Implications Formulate diets based on supply of metabolizable protein Parous cows: 800 to 900 g/d seems sufficient to meet the needs and to support postpartum performance (12 to 13% CP is sufficient is adequate

- ✓ Nulliparous require more than parous cows. At this point, approximately 1,100 g/day (14 to 15% CP is needed, with added undegraded protein source)
- ✓ If housed together, feed for the nulliparous cows

intake of DM is achieved)

✓Limited to no data today in the literature to support health effects of manipulating prepartum dietary protein content

Issues Start Before or Around Calving

19

Inflammatory Disease and Nutrient Flux

✓ Control

✓ Steers received saline (no inflammation)

✓ Challenge

 ✓ Intra-tracheal challenge with 10 mL containing 1 x 10⁹ CFU of Mannheimia haemolytica at hour 0

Burciaga-Robles et al. (2009)

		Treatment	
Ingredients	Control	High MP	High MP + AA
Corn silage	40.0	40.0	40.0
Alfalfa silage + alfalfa hay	17.0	17.0	17.0
Whole cottonseed	9.0	9.0	9.0
Ground corn	15.7	14.0	15.7
Soybean hulls	4.4	1.9	4.4
Soybean meal (48%)	9.0	7.1	8.7
Heat-treated SBM (AminoPlus)	2.0	7.0	
Corn gluten meal (60%)		1.6	
Blood meal + AA			2.3
Fat + Minerals and Vitamins	3.0	2.8	2.8
Nutrients			
Crude protein, %	16.3	18.4	17.4
Rumen degradable protein, %	10.7	11.3	10.2
Methionine, % MP	1.85	1.83	2.60
Lysine, % MP	6.68	6.33	7.20
Histidine, % MP	2.25	2.21	2.90

	Sh	eep ^a	Dairy cow ^b		
Amino acid	MDV:SID	PDV:MDV	MDV:SID	PDV:MDV	
Histidine	-	-	1.27	0.75	
Isoleucine	1.11	0.55	1.02	0.61	
Leucine	1.02	0.64	0.92	0.68	
Lysine	1.03	0.56	0.76	0.72	
Methionine	-	-	1.01	0.66	
Phenylalanine	1.12	0.68	1.00	0.76	
Threonine	0.85	0.69	1.15	0.38	
Valine	0.76	0.57	1.11	0.46	
From MacRae et	al. (1997b).				

 Table 19.3.
 Relative net fluxes of amino acids across the mesenteric-drained viscera (MDV), the portal-drained viscera (PDV) and small intestinal disappearance (SID) in sheep and dairy cows.

Table 19.4. Pr acids removed dairy cows.	roportion of net portal at by the liver in non-lacta	osorption of amino ting and lactating
Amino acid	Non-lactating cows ^a	Lactating cow ^b
Histidine	0.57	0.28
Isoleucine	0.41	n.r.c
Leucine	0.01	n.r.c
Lysine	0.16	0.06 ^d
Methionine	0.70	0.43
Phenylalanine	0.67	0.50
Threonine	0.72	0.11
Valine	0.12	n.r.c
^a From Wray-C ^b From Blouin <i>e</i> ^c Net removal b ^d Data only from	ahen <i>et al.</i> (1997), basa <i>et al.</i> (2002) and Berthiau by the liver zero. In Blouin <i>et al.</i> (2002).	l periods. ume (2000).

Efficiency of Incorporation of Mammary Extracted AA into Milk AA

	Amino acid group (Mepham, 1982)		
	1	2	3
	Histidine	Isoleucine	Alanine
	Phenylalanine	Leucine	Asparagine
	Methionine	Valine	Cysteine
	Tyrosine	Lysine	Glutamine
	Tryptophan	Arginine*	Glycine
		Threonine*	Proline
			Serine
Efficiency (AA-N uptake/ AA-N secreted in milk)	1	> 1.15	< 1.0

33

		Treat	ment					
	С	ON	R	PA	<u> </u>		<i>P</i> -val	lue
Item	Null	Parous	Null	Parous	SEM	TRT	Parity	TRT x parity
Yield, kg	5.38	5.16	8.52	7.19	1.23	0.02	0.51	0.69
Fat, kg	0.405	0.256	0.677	0.401	0.07	< 0.001	0.001	0.26
True protein, kg	1.01	1.03	1.33	1.25	0.16	0.03	0.82	0.67
Lactose, kg	0.200	0.184	0.238	0.244	0.03	0.05	0.86	0.68
Total solids, kg	1.71	1.58	2.39	2.02	0.26	0.01	0.29	0.58

Protein in Early Lactation
✓ Early lactation
✓ Feed diets with 17 to 18% CP to result in ~11.5 to 12% MP
✓ 11% of the diet DM should be degraded protein
\checkmark 6 to 7% of the diet DM should be undegraded protein
 Prioritize high quality rumen undegraded protein sources that complement microbial protein
✓ Blood meal of high intestinal digestibility
✓ Heat-treated soybean meal or canola meal
 ✓ RP Methionine and Lysine should be incorporated into early lactation diets ✓ 2.50% of MP (1.14-1.19 g/Mcal of ME) as methionine and 7.50% of MP (3.03 g/Mcal of ME) as lysine
 ~5.5% of EAA as methionine and ~15.0% of EAA as lysine
 Remember, improving protein supply will stimulate milk synthesis, which will likely increase body fat mobilization in the first 2 to 4 weeks of lactation

Association	Between	Hypoca	lcemia	&	Productivity

Classification of Hypocalcemia					
Variable	Normal	Transient	Delayed	Chronic	SEM
Cows, n	575	239	228	432	
Day 1 Ca, mM	2.14	1.70	2.06	1.63	0.02
Day 3 Ca, mM	2.37	2.32	2.02	1.95	0.01
Metritis, %	11.0	10.5	26.3	26.2	
Milk Yield, kg/d	53.5	(55.1)	51.6	54.1	0.6

Plasma Ca and production data from 1,474 multiparous cows

Nelson, CD unpublished data.

þð

Relationship Between Day 1 Ca and Milk Yield

Table 1. Effect of plasma Ca concentration <1.9 mM at day 1 postpartum and incidence of metritis on production of multiparous cows.

<u>Plasma Ca≥</u>	<u>> 1.9 mM</u>	Plasma Ca <	< 1.9 mM			P-values ¹	
No Met	Met	No Met	Met	SEM	Ca	Met	Ca × Met
687	124	538	139				
7.0	7.3	8.0	7.8	0.3	0.01	0.95	0.36
9.4	9.5	11.1	10.8	0.5	< 0.001	0.86	0.63
23.6	24.0	24.8	24.8	0.3	< 0.001	0.66	0.27
44.8	39.9	46.1	40.0	0.5	0.10	< 0.001	0.21
54.1	50.8	56.1	52.7	0.6	< 0.001	< 0.001	0.91
	<u>No Met</u> 687 7.0 9.4 23.6 44.8 54.1	Plasma Ca \geq 1.9 mixi No Met Met 687 124 7.0 7.3 9.4 9.5 23.6 24.0 44.8 39.9 54.1 50.8	Plasma Ca \geq 1.9 mivi Plasma Ca \geq No Met Met No Met 687 124 538 7.0 7.3 8.0 9.4 9.5 11.1 23.6 24.0 24.8 44.8 39.9 46.1 54.1 50.8 56.1	Plasma Ca \geq 1.9 mMPlasma Ca $<$ 1.9 mMNo MetMetNo Met6871245387.07.38.07.49.511.110.823.624.024.824.844.839.946.140.054.150.856.152.7	Plasma Ca \geq 1.9 mMPlasma Ca $<$ 1.9 mMPlasma Ca $<$ 1.9 mMNo MetMetMetSEM6871245381397.07.38.07.80.39.49.511.110.80.523.624.024.824.80.344.839.946.140.00.554.150.856.152.70.6	Plasma Ca \geq 1.9 mMPlasma Ca $<$ 1.9 mMPlasma Ca $<$ 1.9 mMCaNo MetMetMetMetSEMCa6871245381397.07.38.07.80.30.019.49.511.110.80.5<0.001	Plasma Ca \geq 1.9 mMPlasma Ca < 1.9 mMPlasma Ca < 1.9 mMP-valuesNo MetMetMetMetSEMCaMet687124538139

9

U

Relationship Between Day 3 Ca and Milk Yield

Table 2. Effect of plasma Ca concentration <2.2 mM at day 3 postpartum and incidence of metritis on production of multiparous cows.

	Plasma Ca	≥ 2.2 mM	Plasma Ca <	< 2.2 mM	_		P-values1	
Measure	No Met	Met	No Met	Met	SEM	Ca	Met	Ca × Met
Cows, n	735	89	501	178				
Colostrum								
Yield, kg	7.4	7.7	7.7	7.5	0.3	0.71	0.88	0.45
NE, Mcal	10.0	10.4	10.6	10.3	0.5	0.67	0.91	0.45
Brix, %	23.8	24.5	24.8	24.4	0.3	0.14	0.59	0.06
Milk yield								
Day 1 to 7, kg/d	45.6 ^a	42.2 ^b	45.4 ^a	39.0°	0.5	< 0.001	< 0.001	< 0.001
Day 1 to 70, kg/d	55.0 ^{ab}	53.2 ^{bc}	55.4ª	51.3°	0.6	0.15	< 0.001	0.02

Nelson, CD unpublished data.

Effect of Prepartum Calcidiol on Energy Corrected Milk, kg/d

Martinez, 201835.839.50.03Poindexter, 202336.339.00.06ExperimentControlCalcidiolP-valueSilva, 202129.332.40.03Holub, 202354.956.70.04	Experiment	Cholecalciferol	Calcidiol	<i>P</i> -value
Poindexter, 2023 36.3 39.0 0.06 Experiment Control Calcidiol P-value Silva, 2021 29.3 32.4 0.03 Holub, 2023 54.9 56.7 0.04	Martinez, 2018	35.8	39.5	0.03
ExperimentControlCalcidiolP-valueSilva, 202129.332.40.03Holub, 202354.956.70.04	Poindexter, 2023	36.3	39.0	0.06
Silva, 202129.332.40.03Holub, 202354.956.70.04	Experiment	Control	Calcidiol	<i>P</i> -value
Holub, 2023 54.9 56.7 0.04	Silva, 2021	29.3	32.4	0.03
	Holub, 2023	54.9	56.7	0.04
Martinez et al. 2018. J. Dairy Sci. 101:2544-2562. Silva et al., 2022. J. Dairy Sci. 105:5796-5812. Poindexter et al., 2023. J. Dairy Sci. 106:974-989. Holub, et al., 2023. J. Anim. Sci. 101(Suppl. 3):632-			Silva et al., 2022, J. Da	iry Sci. 105:5796-5812.

25

UF

IFAS UNIVERSITY of FLORIDA

Summary & Conclusions

- Interaction between metritis and day 3 postpartum SCH is associated with decreased milk yield
- Feeding a low prepartum DCAD prevents milk fever and decreases risk of uterine diseases
- Feeding calcidiol prepartum:
 - Increased serum Ca from 2 to 9 DIM but not 0 and 1 DIM
 - Increased milk yield by 3 to 4 kg/d in first 42 DIM

Acknowledgements

University of Florida

- Michael Poindexter
- Achilles Vieira-Neto
- Ana da Silva
- Leslie Blakely
- Teri Wells
- Samantha Bohm
- Roney Zimpel
- Jose Santos

DSM Nutrition

- Pietro Celi
- Mark Engstrom

Southeast Milk Checkoff

Contact: cdnelson@ufl.edu https://animal.ifas.ufl.edu/people/corwin-d-nelson/

Classification of Bacterial Species by Function

In 1953, Bryant & Burkey isolated and characterized 896 strains of bacteria from the rumen of cows fed different diets during six experiments. There fundings are summarized in table:

Classification	% of total population
Anaerobic	98
Glucose users	72
Cellobiose users	62
Xylan (hemicellulose) users	54
Starch users (amylolytics)	39
Protein users (proteolytic)	21
Cellulose users (cellulolytics)	15

Stability and Adaptability of the Ruminal Microbial Community in Mature Animals

	Characteristic	Definition	Likely status in rumen				
	Inertia	Resistance to change	High, based on dosing studies				
	Resilience	Ability to restore its structure following acute or chronic disturbances	High, based on exchange studies				
Previous attempts to modulate the mature rumen microbiome: diet, enzymes, prebiotics, probiotics, etc.							
	The effects do not	persist once the insult is dis	continued.				
			Weimer (2015), Fr				

Modulatory Effect of Antibodies on Gastrointestinal *Microorganisms*The lack of response to diet and inoculum in early-life trials indicates that host-dependent mechanisms may contribute to rumen homeostasis. Immune system >> antibodies Secretory immunoglobulin A (SIgA)

Preliminary Conclusions

- SIgA derived from bovine colostrum promotes the growth of fiber-digesting bacteria.
- SIgA derived from bovine colostrum influences the modulation of rumen fermentation.
- There seems to be an association between feed efficiency and the proportion of rumen SIgA-coated bacteria in dairy cattle.
- Milk is the primary source of SIgA to young dairy calves.
- Future: We expect to demonstrate that milk SIgA modulated the rumen microbial ecosystem.

Effects of Exposure to Heat Stress During Late Gestation on the Daily Time Budget of Nulliparous Holstein Heifers

Toledo I.M., Ouellet V., Davidson B.D., Dahl G.E., and Laporta J. 2022. Effects of exposure to heat stress during late gestation on the daily time budget of nulliparous Holstein heifers. Front. Anim. <u>https://doi.org/10.3389/fanim.2022.775272</u>

Hypothesis

Exposure of pregnant nulliparous Holstein heifers to hyperthermia during late gestation induces behavior modifications that have lingering effects during lactation.

Objectives

To characterize natural behaviors of nulliparous Holstein heifers 60 d pre-and postpartum and examine the effects of late gestation heat stress on those behaviors.

Eating, Rumination, and Lying times (min/d) of Late Gestation **Nulliparous Heifers and Late Gestation Dry Cows**

Behavior/Treatments ⁴	Late-gestation Nulliparous Heifers ¹		Calving week Nulliparous Heifers ²		Late-gestation cows ³		
	CL/TN	HT	CL/TN	HT	CL/TN	HT	References
Eating, min/d							
	183	224	209	223	166	147	Karimi et al., 2015
					205	-	Schirmann et al., 2013
Rumination, min/d							
	518	465	471	456	655	_	Ouellet et al., 2016
					283	243	Karimi et al., 2015
Lying, min/d							
	854	817	687	689	962	_	Jensen et al., 2012
					1050	966	Karimi et al., 2015
					768	_	Ouellet et al., 2016

¹Behaviors automatically recorded from 7 to 2 weeks before calving in the present study

²Behaviors automatically recorded during the last 7 days before calving in the present study

³Behaviors automatically recorded during the 3 weeks before calving or last 7 days before calving retrieved in different studies ⁴CL/TN = animals exposed to active cooling by fans and soakers or housed in thermoneutral conditions; HT = animals deprived of cooling or exposed to high temperature-humidity index

Eating, Rumination, and Lying Times (min/d) in **Postpartum Nulliparous Heifers and Lactating Cows**

Behavior/Treatments ⁴	Postpartum Nulliparous Heifers ¹		Calving week Nulliparous Heifers ²		Lactating cows ³		
	CL/TN	HT	CL/TN	HT	CL/TN	HT	References
Eating, min/d	130	179	180	209	224	_	King et al., 2016
Rumination, min/d	511	496	588	593	340–410 535–545	 493–520	Pahl et al., 2015 Müschner-Siemens et al., 2020
Lying, min/d	637	604	666	638	660–720 600	480	Cook et al., 2004b Cook et al., 2007

¹Behaviors automatically recorded from 0 to 10 days postpartum in the present study

²Behaviors automatically recorded from 2 to 9 weeks postpartum in the present study

³Behaviors automatically recorded during in lactating multiparous cows

4CL/TN = animals exposed to active cooling by fans and soakers or housed in thermoneutral conditions during the last 60 days of gestation; HT = animals deprived of cooling or exposed to high temperature-humidity index during last 60 days of gestation

Objective

To have a better understanding of how heat stress affects the daily time budget of late gestation dairy heifers in order to adapt management practices in adverse conditions.

23

Design and Management

- 17 Holstein dairy heifers
- Treatments:
 - Pasture (PA; n= 6)
 - Heat Stress (HT; n=6)
 - Cooling (CL; n=5)
- Study Period: measurements were recorded for each cow for 14 days
- Respiration Rate (breaths/min) were recorded thrice weekly
- Temperature and Humidity Index was measured during the entire study through HOBO devices.
- Black Globe Temperature was measured during the entire study period by using a black globe temperature sensor.
 UFITEAS

Design and Management

Heat Stressed Heifers:

· Sand bedded free stalls

Cooled Heifers:

- · Sand bedded free stalls
- Fans over stalls
- · Soakers over feedline
- Fans on at 70° F (21.1°C)
- Soakers on 1 min every 5 min at 72° F

Pastured Heifers:

Portable shade shelters •

Temperature-Humidity Index, Black Globe Temperature and Respiration Rate During the Study Period

• Temperature-Humidity Index averaged 78.0 in the pasture and 77.3 in the free-stall barn

UF IFAS

- Black Globe Temperature averaged 29 °C
- Respiration Rates (P < 0.01)
 - Cooled Heifers: 48 ± 2.11 bpm
 - Heat Stressed Heifers: 61 ± 8.69 bpm
 - Pastured Heifers: 96 ± 2.14 bpm

Seasonal Effects on Multiparous Lactating Dairy Cow Behavior

Izabella M. Toledo, L.T. Casarotto and G.E. Dahl

JDS Communications, accepted.

Hypothesis

Seasonal changes will affect the behavior of multiparous lactating dairy cows housed in free-stall facilities and exposed to active cooling.

Objectives

To have a better understanding of how seasonal changes affect the daily activities and the behavior of multiparous dairy cows.

Objective

To have a better understanding of how the development of intramammary infections affect the behavior of lactating dairy cows in heat stress conditions.

47

Design and Management

- 12 multiparous lactating Holstein cows
- · Sand bedded free stalls
- Temperature and Humidity Index, was assessed during the entire study period

ehavior Activity	Cooled Cows	Heat Stressed Cows	P-value
Standing Bouts	13.5 ± 0.77	13 ± 0.65	0.61
eps per Day	$2,716\pm142$	$2,524 \pm 123$	0.33

-	2
5	≺
-	-

Take Home Message

- Exposure to heat stress affects the behavior of dairy cows at different stages of the lactation cycle
- Exposure to heat during lactation negatively affect the behavior and the daily time budget of lactating Holstein cows even in free-stall facilities with active cooling.
- Insights onto heat stress effects in the daily time budget of dairy cows during different seasons and stages of the lactation cycle may contribute to the development of more effective management strategies to decrease the possible negative effects of heat exposure.

<section-header><section-header><section-header><text><text><text><text><text><text>

1 Association bet	tween the pro	portion of B	os indicus ae	enetics of cov	vs and rate o	of calving in th	e calving s
		Proporti	on of <i>B. india</i>	cus genetics	(aroups)	o carving in an	e carving c
Item	0-19%	21-34%	38% (Brangus)	41-59%	63-78%	81-100%	<i>P</i> -value
Females, no. Rate of calving ¹	1,180	1,039	876	1,395	848	974	•
AHR (95% CI) ²	1.69* (1.54-1.86)	1.49* (1.35-1.64)	1.44* (1.30-1.59)	1.48* (1.35-1.62)	1.39* (1.26-1.54)	1.0 (reference)	< 0.000
Days to calving Mean + SEM	52.3 ± 1.2	59.0 ± 1.4	57.6 ± 1.4	57.3 ± 1.1	60.3 ± 1.4	78.0 ± 1.6	
		47	19	47	50	68	

Acknowledgements zoetis Florida Committee members: Genus Dr. Binelli Hansen Lab · Dr. Bromfield Tatiane Maia Dr. Cooke • • Lane Haimon STROTECT . Dr. Hansen • Masroor Sagheer Dr. Santos • Quinn Hoorn RANCHES DESERET Binelli lab · Thiago Martins Mateescu lab Felipe Silva • Camila Santos USDA . United Stat of Food and Agriculture Rojas nt of Departmen Agriculture Meghan Campbell • · Fahad Rafique • Alexandra Bennett FARMS team • • Eduardo Rodriguez Mackenzie Mazziota • Dr. Ricardo Chebel • • Gabriel Zayas Andrey Cordeiro • Ana Montevecchio • • Mariangela Maldonado • BRU • Dr. Philipe Moriel Luana Factor • • Abdul Waheed Danny Driver • • Dr. Ky Pohler (TAMU) Jessica Marsh Philip Peixoto Jesse Savell • • Ashley Bloomfield • Audy Spell • • Dr. Alejandro Ojeda Tomas Gonzalez • • Fernando Mesquita Brian • • Dr. Owen Rae • Alejandro Ojeda Gabriela Lomba • Agronomy • Gabriella Marinho **UF** IFAS 21

Feed Saved, a Novel Trait for Selection in Dairy Cattle

Can We Select for RFI? Manhattan Plot for RFI (d)0160) 5 11 13 19 22 2 3 7 9 16 26 Chromosome Higgins et al. (2018) Sci. Rep 8:1301 **Prediction Equation** Breeding value = t1x1 + t2x2 + t3x3 + Eggen. (2012) Anim. Front. 2:10-15. Build a reference population: Phenotype + Genotype Michigan State Univ., Univ. of Wisconsin, Iowa State Univ., Univ. of Florida, the USDA Beltsville, and the Animal Improvement Program Laboratory of the USDA Identify regions/SNPs that explain a large variability in RFI phenotype ✓ Whole genome scan (E.g.: GWAS) Use a prediction equation to estimate the genomic breeding value Apply equation to the selected candidate sires to identify the best animals

Relationship between RFI and Performance

O

		Feed Effi	ciency			
Item	Q1	Q2	Q3	Q4	SEM	P-value
DMI, kg/d	21.0	22.3	22.6	24.2	0.4	<0.001§
ECM, kg/d	39.0	39.9	38.2	39.9	1.1	0.64
Fat, %	3.26	3.24	3.31	3.44	0.11	0.55
Protein, %	2.85	2.87	2.91	2.93	0.04	0.37
Lactose, %	4.81	4.87	4.86	4.86	0.03	0.48
BEC, Mcal/d	2.54	2.48	2.19	2.50	0.34	0.88
§ Linear Effect						

19

Relationship between RFI and Milk Fatty Acids

		Feed Eff	iciency			
Fatty acids, g/100g	Q1	Q2	Q3	Q4	SEM	P-value
< C 16	24.4	24.8	24.9	25.6	0.5	0.42
C 16	35.3	36.4	36.8	37.4	0.4	< 0.001§
> C 16	39.5	38.0	37.6	36.3	0.7	0.002 §
Saturated	65.9	67.1	67.5	68.3	0.7	0.12 §
Monounsaturated	29.9	28.8	28.2	27.4	0.7	0.007
Unsaturated	33.3	32.2	31.7	30.9	0.7	0.11
Polyunsaturated	3.44	3.48	3.54	3.52	0.07	0.69
trans	4.59	4.52	4.35	4.47	0.25	0.92
Milk fat depressing	0.054	0.059	0.048	0.063	0.006	0.39
§ Linear Effect				Nehme M	larinho et al. (2	024) in preparation

Relationship between RFI and Total Tract Digestibility

		Feed E	fficiency			
Item	Q1	Q2	Q3	Q4	SEM	P-value
DM, %	74.8	74.3	74.6	74.7	0.3	0.77
OM, %	76.8	76.2	76.7	76.8	0.4	0.60
CP, %	72.3	71.4	72.0	72.3	0.7	0.77
NDF, %	44.6	44.2	45.0	45.0	0.6	0.76
Starch, %	98.6	98.8	98.7	98.7	0.1	0.46
Fat, %	82.4	81.1	82.8	82.1	0.9	0.56

Relationship between RFI and Behavior Traits

		Feed E	fficiency			
Item	Q1	Q2	Q3	Q4	SEM	P-value
Rumination, min/d	570.0	566.8	585.5	600.3	8.7	<0.01 [§]
Rum/DMI, min/kg	26.2	24.9	25.0	24.1	0.6	0.02 [§]
Rum/NDFI, min/kg	97.6	92.7	93.3	89.8	2.3	0.02 [§]
Activity, step/h	160.5	158.0	156.5	167.1	6.7	0.69
§ Linear Effect						
				Nehme M	arinho et al. (2	024) in preparati

23

Relationship Between RFI and Ruminal Fermentation

		Feed E	fficiency			
Item	Q1	Q2	Q3	Q4	SEM	P-value
рН	6.2	6.2	6.4	6.3	0.1	0.06"
Acetate, mmol/L	71.1	70.3	71.1	70.1	1.0	0.83
Propionate, mmol/L	26.1	26.1	26.8	25.6	0.7	0.58
Butyrate, mmol/L	16.0	15.0	15.5	15.3	0.4	0.25
Total VFA, <i>mmol/L</i>	118.6	116.5	118.8	116.2	1.4	0.49
Ammonia N, mg/dL	10.0	9.3	9.0	8.0	0.5	<0.01§
[§] Linear Effect [¶] Cubic Effect						

Relationship Between RFI and Rumen Microbiome *P* < 0.01 *P* < 0.01 130-5.50 Inverse Simpson 120-Shannon Index 5.40 110 5.30 5.20 100-90 5.10 Least Least Most Most PERMANOVA, P < 0.001 PCoA2 (9.77%) RFI Group -15 -20 -10 0 PCoA1 (15.4%) Monteiro et al. (2024) Anim. Microb. 6:5

OUTLINE · Importance of livestock in developing countries · Potential of ASF to address hidden hunger • Effects of ASF on nutritional status, growth, and cognitive development • Barriers to ASF consumption Conclusions 2

LIVESTOCK FOR LIFE IN LMICS

- Livestock support livelihoods of over 1 billion people
- Up to 80% of the population in some LMIC (1/3 of Africans) depend on livestock for livelihoods
- Livestock account for 40% of agricultural GDP on average
- As populations and incomes grow, demand for ASF grows

e.g., 600% poultry feed sector growth in Nigeria in 10 years due to growth in poultry production

Nigerian livestock sector

(GFC-UCDavis- FAO; AU-IBER, 2016; Liverpool-Tassie et al., 2016; LD4D, 2018; FAO, 2021; Berhanu, 2021)

3

FEED FUTURE

SOCIOCULTURAL SIGNIFICANCE

- Status symbol
- Religious veneration
- Ceremonial gifts
- Conflicts/wars

(Swanepoel et al., 2010)

Section 2017 Secti

LIVESTOCK MANURE, A VERSATILE RESOURCE IN LMICS

- Manure is used as a fertilizer, cooking fuel and a building material in many parts of Asia and Africa
- Manure building blocks are being tested in The Netherlands; may reduce emissions by >30%. (Christiaensen and Heltberg, 2012)

5

NUTRIENT UPCYCLING AND CROP PRODUCTIVITY

- Crop residues/ marginal pastures dominate ruminant diets in LMIC
- Livestock upcycle poor quality forage into nutrient-dense products and manure
- Rwanda GIRINKA Project
 - More than 130,000 cows distributed
 - Increased household income
 - Crop yields increased (by up to 100%)
 - Contributed to a decrease in stunting (44% in 2012 to 32% today)

7

DRAFT ANIMAL POWER

- Provided traction for ~ 50% of the world's farmers in 2009 (World Bank)
- Accounted for 25% of the total energy requirement for farming
- May foster less GHG emissions and non-renewable energy use vs. machinery
- Ideal for marginal lands particularly in rural areas

(Mota Rojas et al., 2021; FAO 1982; Sims and O'Neil, 2003)

EEDIFUTURE

9

🇶 FEEDIFUTURE

GLOBAL PREVALENCE OF UNDERNUTRITION

- Over 3 billion people cannot afford a healthy diet;
- 800 million are regularly hungry.
- 144 million children under 5 have stunted growth and cognition;
- 39 million are overweight.
- 45 million suffer from wasting, the deadliest form of malnutrition.

UNICEF/WHO/World Bank Group, 2023

Seed FEED FUTURE

FEEDFUTURE

STARK DIFFERENCES IN GLOBAL MILK CONSUMPTION BY REGION/ COUNTRY (kg per person /year)

I	<30	30 to 150	>150	>300
DR Congo	Most of sub-Saharan Africa & East & Southeast Asia	India, Iran, Japan, Kenya, Mexico, Mongolia, New Zealand, North and Southern Africa, most of the Near East, Latin America and the Caribbean	Argentina, Armenia, Australia, Costa Rica, Europe, Israel, Kyrgyzstan, North America, and Pakistan	Sweden Finland

(Adapted from FAO, 2019)

Animal-Source Foods: Bioavailable Nutrient Cluster and Undernutrition Solution					
	Nutrient	Advantage vs. plant-source food			
Superior-quality (ideal) protein	Protein	Higher quality/complete			
	Iron	Only dietary source of bioavailable haem			
Higher energy density	Zinc	More bioavailable			
Higher nutrient	Calcium	More bioavailable			
density and bioavailability	Vitamin B12	Only dietary source			
	Vitamin A	Only preformed source (retinol); more bioavailable			
	Vitamin D3	Only dietary source; more active and bioavailable than D2			
	Choline	Main dietary source			
	EPA and DHA	Main dietary source			
	Thiamin, riboflavin, Vitamin B6				
	Allen et al., 20	19; Beal et al., 2020			

FEEDIFUTURE

FEED FUTURE

22

Set FEEDIFUTURE

ASF IMPROVED NUTRITION AND PHYSICAL GROWTH

Length-for-age Z-score ES (95% CI) Weight(%) Krebs et al., 2012 -0-15 (-0-31, 0-01) 15-26 Bauserman et al., 2015 -0-10 (-0-55, 0-35) 5-59 Stewart et al., 2019 0-07 (-0-00, 0-14) 19-44 Meta analysis of 8 studies (Randomized controlled trials) Tang et al., 2014 0.11 (0.03, 0.19) 19-16 ٠ Long et al., 2012 0.14 (-0.16, 0.44) 9-61 Omer et al., 2019 0.27 (0.02, 0.52) 11-39 Rosado et al., 2011 0.30 (-0.03, 0.63) 8-40 Studies had 42 to 1471,5 to 24 month-old children from Iannotti et al., 2017 0-63 (0-38, 0-88) 11-15 rural parts of Africa and Asia Random effect estimate (12 = 76.8%, p < 0.001) 0.15 (0.02, 0.27) 100-00 Fixed effect estimate 0.10 (0.05, 0.14) Favors Treatment Background diets contained little or no ASF Weight-for-age Z-score ASF supplementation resulted in lower stunting and Study ES (95% CI) Weight(%) ٠ Krebs et al., 2012 -0-13 (-0-25, -0-01) 14.52 wasting Long et al., 2012 0-06 (-0-19, 0-31) 11.51 wart et al., 2019 0-06 (-0-04, 0-16) 14.82 Tang et al., 2014 0-08 (0-01, 0-15) 15-26 man et al., 2015 0.20 (-0.17, 0.57) 8-80 Baus Rosado et al., 2011 0-40 (0-08, 0-72) 9-88 Omer et al., 2019 0-43 (0-18, 0-68) 11-46 Iannotti et al., 2017 0-61 (0-45, 0-77) 13.73 0-20 (0-03, 0-36) Random effect esti §9.5%, p < 0.001) 100.00 Fixed effect estimate 0-11 (0-06, 0-15) (Asare et al., 2022)

25

FEED FUTURE

MILK CONSUMPTION REDUCES UNDERNUTRITION

- Monitored milk consumption based on 24 h recall by mothers from 67 LMIC
- Measured child stunting (HAZ), underweight (WAZ) and wasting (HAZ)
- Approx. 668,000 children aged 6 to 59 months per measure
- Milk consumption was associated with reduced stunting (HAZ) and underweight (WAZ)

LULUN EGG PROJECT, ECUADOR

- Giving one egg per day to 6–9-month-olds in Ecuador for six months
- Reduced stunting (low height or length for age) by 47%
- Reduced wasting (low weight for age) by 74%

(lanotti et al, 2017)

27

FEED FUTURE The U.S. Conversioned & Calcular Hauser & Food Security Industrie

ONE EGG PROJECT, BURKINA FASO

Our culturally tailored behavior change intervention

- Increased egg intake in children with and without gifting chickens
- Reduced wasting and underweight
- Increased women's decision-making power

Baseline egg consumption was zero.

(McKune et al., 2020)

GROWTH OF BRAIN REGIONS IN BREAST VS. FORMULA-FED INFANTS

Breastfed children had:

- improved overall myelination
- increased general, verbal, and nonverbal cognitive abilities
- long-chain PUFA, iron, choline, sphingomyelin and folic acid are significantly associated with early myelination

(Over 5 School Terms)

+28

Milk

-7%

Energy

50

20

10 0

-10

30 Tag

40 +45

Meat

29

ASF INCREASED CHILDREN'S COGNITION IN KENYA

Embu Kenya, 2 years; 7–10-year-olds; n=554

Meat improved:

- Cognitive performance (Raven's score, math)
- School test scores
- Physical activity, initiative and leadership
- Arm muscle mass, BI2 status

Milk improved:

- Linear growth if stunted
- BI2 status

(Neumann et al., 2007; Hullet et al., 2014)

Control

Section 2017 Secti

DAIRY INTAKE ASSOCIATED WITH INCREASED COGNITION IN ADULTS

- Cross-sectional analyses
- 399 males and 573 females, aged 23–98 years
- Monitored self-reported frequency of dairy consumption
- Measured cognition in different ways.
- Increased dairy consumption frequency was associated with increased cognition

31

FEED FUTURE

ASSOCIATION BETWEEN MEAT CONSUMPTION AND HEIGHT OR COGNITION

(20,086 Chinese men and women that were >50)

			CHILDHOOD MEAT EAT	ſING ^ª	
	Yearly/Never	About once a month	About once a week	Almost daily	Trend P value
Height (cm) ^b	-	0.24*	0.54***	0.76***	< 0.001
Cognition (delayed 10 word recall)		0.12**	0.32***	0.57***	< 0.001
Cognition (Immediate 10 word recall)		0.72***	1.47***	1.77***	< 0.001

FEEDIFUTURE

33

MEAT CONSUMPTION ASSOCIATED WITH IMPROVED COGNITION 50.00 9 studies (5 interventional and 4 observational) 42.86 % 40.00 35.71 % • 10617 children (age range 3 months to 14 years) 30.00 21.43 % China, Estonia, Finaland, Kenya, UK 20.00 10.00 • 28 Variables / measures of cognitive function 0.00 Variables Improved Declined No effect 12 cognitive function variables (from 5 studies) improved as a result of meat supplementation or were positively associated with meat consumption, 10 other variables (from 3 studies) were negatively affected by meat supplementation, 8 of ¹If the 8 studies with confounding HIV effects are which were on subjects under mitigatory conditions. 6 variables (from 2 studies) did not show significant relationship with meat consumption. removed, meat consumption increased cognition in 71% of variables (Balehegn et al., 2022)

BARRIERS TO ASF CONSUMPTION

- Sociocultural factors
 - Gender
 - Caste
 - Religion
 - Cultural taboos
 - Fads
- Biases (crops, fortificants)
- Availability (low livestock productivity)
- Affordability
- Accessibility

35

EXEMPTIVE EXAMPLE PROVIDELivestock play a vital role in social status, conflict, religion, equity, incomes, educations and livelihoods in the developing world Stunting affects 144 million children under five, constraining their growth, health, education, and future productivity ASF are at superior for preventing stunting and enhances cognitive development and growth ASF are inadequately consumed in LMIC due to socio-cultural factors, biases and lack of affordability, accessibility and availability. Multisectoral approaches are needed to improve supply of and demand for ASF in developing countries.

Effects of Trace Mineral Supplementation on Fiber Digestion and Cow-Calf Production

Terry Engle Colorado State University Department of Animal Science

		mg	J/kg dry n	natter inta	ke	
Item	Cu	Fe	Mn	Se	Zn	Со
NRC	10.0	50	20	0.10	30	0.15
CSIRO (2007)				0.05	11.6	
Costa e Silva et al. (2015)	9.53	218	9.5	0.57	61	2.78
BR-CORTE (2016)	7.91	207.3	23.1	0.56	56.8	0.78

THE CO	Ruminal disappears forages from dacroi hours in the rumen	ance of n bags i of cattl	copper a ncubate e	and zinc d for 0 c	e from or 72
LLEG		Сор	per	Zir	าด
E of AG	Forage	0 ^a	72 h	0 ^a	72 h
			% of t	otal	
rURAL	Alfalfa	88.9	92.9	25.8	79.4
	Rhizoma peanut	50.6	89.6	18.1	80.5
	Dwarf elephantgrass	84.4	94.3	7.3	75.5
	Bermudagrass	69.9	75.8	43.1	62.1
	Bahiagrass	63.1	81.7	33.8	53.0
	Limpograss	70.0	69.5	26.6	67.2
	^a Amount disappearing follo	owing wa	shing with	water.	
				Emanuele a	nd Staples (1990)

Effect of trace mineral source on fiber digestion in lactating dairy cows^a

Item	Sulfate ^a	Hydroxy ^a
NDF digestion, % ^b		
Forage diet ^c	43.0	45.9
By-product diet ^d	49.8	51.2

Faulkner and Weiss (2017)

aCopper, zinc, and manganese were supplemented at 10, 32, and 30 mg/kg, respectively. ^bTrace mineral source effect (P < 0.02). °44% corn silage, 20% alfalfa silage.

^d11% corn gluten feed, 15% beet pulp, 14.1% soy hulls.

THE COLLEGE of		Influence of trace minera	l source on Di Treat	M and NDF d	igestibili	ty ^a
AGRICI		Item	Sulfate ¹	Hydroxy ²	SEM	P <
JLTUR		DM intake, kg/d	9.92	9.89	0.96	0.98
AL SCI		DM digestibility, %	65.6	70.7	2.4	0.18
ENCES		NDF digestibility, %	37.8	41.2	1.7	0.09
ŭ	•	^a Zinc, copper, and mangar mg/kg DM, respectively.	nese were sup	plemented a	t 30, 10,	and 20
					Caldera e	et al. (2019)

THE COLLEG	Effect of trace steers fed a	mineral s low-qual with p	source on d lity hay sup protein ^a	digestibility in oplemented
E of AC		Sulfate	Hydroxy	P<
3RICU	DMI, kg/d	7.4	7.4	
LTUR	DM digestibility, %	51.9	53.4	0.07
AL SC	NDF digestibility, %	40.4	42.7	0.04
	ADF digestibility, %	32.4	34.1	0.05
	CP digestibility, %	51.2	54.3	0.06
	^a Copper, manganese, and zinc w	ere supplemented a	at 20, 40, and 60 mg/kg	3, respectively. Guimaraes et al. (2019)

Influence of trace min production at 0, 2, and	Da neral sourd d 4 hours	rce on shu s post fee	ort chain ding.	fatty acic	I
	Treat	mentª			
Item	STM⁵	HTM ^c	Trt	Time	Trt*Time
рН	6.59	6.68	0.47	0.01	0.57
Butyric acid, mM/100mM	16.3	14.9	0.02	0.001	0.93
Total SCFA, mM	59.8	72.3	0.05	0.85	0.86
"Treatments: 20 mg Cu/kg DM; 40 mg f ^b Sulfate trace minerals. 'Hydroxy trace minerals. 'Short chain fatty acids.	Ип/kg DM; 60 r	ng Zn/kg DM fro	m hydroxy or su	lfate trace miner	al sources. Guimaraes et al. (2019)

Effect of trace mineral source on release of copper and zinc from rumen digesta at 12 hours after a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM

	Hydroxy	Sulfate	P <
Initial concentration in digesta,			
mg/kg DM			
Copper	31.6	8.1	0.001
Manganese	38.2	35.3	0.030
Zinc	129.6	37.3	0.001
Released by Tris-EDTA, %			
12h			
Copper	59.2	26.5	0.01
Manganese	63.7	77.2	0.01
Zinc	87.8	34.3	0.01
		G	uimaraes et al. (201

Ingredients,% II	nclusion, % DM	Ingredients,%	Inclusion, % DM
Corn Silage	64.5	Steam-flaked corn	66.9
Alfalfa Hay	10.2	Corn Silage	10.0
Supplement	25.5	Alfalfa hay	10.0
Soybean meal	64.0	Dry distillers grain	10.0
Dry distillers grain	16.2	Supplement	3.1
Cracked corn	9.4	Limestone	48.4
Limestone	7.5	Urea	35.
Salt	1.9	Salt	9.0
Magnesium oxide	0.64	VTM premix	6.
Trace mineral premix	0.35	*Formulated to target 1.6 kg ADG.	
^a Formulated to provide 45.5 kg milk/d/ Treatments: Sulfate, Organic, and HTM	ay. (Cu, Zn, and Mn).	Treatments: Sulfate and HTM (Cu, Zn, and I	Mn).
*formulated to provide 45.5 kg milk/di Treatments: Sulfate, Organic, and HTM	ry. (Cu, Zn, and Mn).	Treatments: Sulfate and HTM (Cu, Zn, and	Mn).

Influence of trace mineral source on short chain fatty acid (SCFA) production post feeding (dairy diet).

		Treatmen	<u>t</u>			<u>P valu</u>	e
ITEM	ZTM	ORG	нтм	SEM	Trt	Time	Trt x Time
Rumen pH	6.38	6.42	6.59	0.09	0.26	0.01	0.17
Total VFA, mM	73.3	78.0	77.4	0.8	0.01	0.01	0.05

Guimaraes et al. (2022)

Effects of trace mineral supplement on cow BW, BCS, reproductive performance, and actual and 205 day adjusted weaning weights (Year 1, 2, and 3; Preliminary Data).

	Treatment			C	ontrast
Sulfate ¹	Intellibond 1x ²	Intellibond 0.5x ³	SEM	Sulfate vs.	Intellibond 1x vs.
				Intellibond 1x	Intellibond 0.5x
55.0	63.3	56.7	5.1	0.64	0.63
30.0	57.5	51.7	6.2	0.05	0.41
40.4	60.9	57.3	5.3	0.07	0.40
91.7	93.3	93.1	2.3	0.86	0.92
95.0	95.0	96.7	5.9	0.98	0.87
94.8	95.0	96.1	6.3	0.97	0.83
236.4	240.1	235.9	6.1	0.87	0.91
242.2	249.9	244.2	3.8	0.10	0.29
242.1	240.2	250.3	10	0.07	0.17
	Sulfate ¹ 55.0 30.0 40.4 91.7 95.0 94.8 236.4 242.2	Treatment Sulfate1 Intellibond 1x2 55.0 63.3 30.0 57.5 40.4 60.9 91.7 93.3 95.0 95.0 94.8 95.0 236.4 240.1 242.2 249.9 241.1 249.2	Treatment Sulfate ¹ Intellibond 1x ² Intellibond 0.5x ³ 55.0 63.3 56.7 30.0 57.5 51.7 40.4 60.9 57.3 91.7 93.3 93.1 95.0 95.0 96.7 94.8 95.0 96.1 236.4 240.1 235.9 242.2 249.9 244.2	Treatment Sulfate ¹ Intellibond 1x ² Intellibond 0.5x ³ SEM 55.0 63.3 56.7 5.1 30.0 57.5 51.7 6.2 40.4 60.9 57.3 5.3 91.7 93.3 93.1 2.3 95.0 95.0 96.7 5.9 94.8 95.0 96.1 6.3 236.4 240.1 235.9 6.1 242.2 249.9 244.2 3.8	Treatment Colspan="2">Colspan="2" 55.0 63.3 56.7 5.1 0.64 30.0 57.5 51.7 6.2 0.05 40.4 60.9 57.3 5.3 0.07 91.7 93.3 93.1 2.3 0.86 95.0 96.1 6.3 0.97 236.4 240.1 235.9 6.1 0.87 242.2 249.9 244.2 3.8 0.10

Jointer 1 Units VocUm (2010) requirements for Cu, 2n, and min – Jointe Source Initiation Containing 2000, 2000, and 2000, and 2000 mg/kg of Cu, Min, and Zh. Hydroxy 11st: Hutens NASEM (2016) requirements for Cu, 2n, and Mn – Hydroxychloride source mineral containing 1000, 2000, and 3000 mg/kg of Cu, Mn, and Zh (Intellibond C, Z, M, Micronutrients USA LLC (Indianapolis, Ni). Hydroxy OSA: O Source Simes NASEM (2016) requirements for Cu, 2n, and Mn – Hydroxychloride source mineral containing 500, 1,000, and 1,500 mg/kg of Cu, Mn, and Zh (Intellibond C, Z, M, Micronutrients USA LLC (Indianapolis, Ni). Hiermanized, By obese; Richards eat al., 1986. ⁵Artificial insemination.

Effects of pasture trace mineral supplement on offspring feedlot performance and carcass characteristics (Year 1, and 2;
Preliminary Data).

Item	Treatment				Contrast	
	Sulfate ¹	Intellibond 1x ²	Intellibond 0.5x ³	SEM	Sulfate vs. Intellibond 1x	Intellibond 1x vs. Intellibond 0.5x
Year 1 (2022)						
Feedlot initial BW, kg	240.1	243.3	241.9	5.3	0.86	0.86
Feedlot Final BW, kg	634.2	637.1	638.9	7.9	0.60	0.79
Feedlot ADG, kg·animal ⁻¹ ·d ⁻¹	1.76	1.77	1.78	0.07	0.91	0.94
Hot carcass weight, kg	384.2	385.3	385.2	6.4	0.87	0.88
Dressing percentage ⁴	63.1	63.0	62.8	0.24	0.74	0.78
Marbling score⁵	634.2	648.3	644.8	9.3	0.36	0.37
Fat thickness, cm.	1.38	1.30	1.19	0.54	0.76	0.84
Ribeye area, cm. ²	83.2	84.1	82.9	1.97	0.91	0.87
USDA YG	2.78	2.69	2.81	0.07	0.62	0.55
Year 2 (2023)						
Feedlot initial BW, kg	240.4	244.7	243.9	5.9	0.74	0.81
Feedlot Final BW, kg	637.2	648.3	647.1	6.7	0.21	0.73
Feedlot ADG, kg·animal ⁻¹ ·d ⁻¹	1.73	1.75	1.76	0.08	0.92	0.94
Hot carcass weight, kg	387.2	391.2	395.6	5.2	0.64	0.88
Dressing percentage ⁴	63.3	62.9	63.6	0.31	0.42	0.38
Marbling score⁵	638.7	654.1	632.1	10.3	0.67	0.58
Fat thickness, cm.	1.41	1.30	1.29	0.11	0.47	0.38
Ribeye area, cm. ²	84.1	85.2	82.9	0.94	0.85	0.19
LICE A MO	2.89	2.58	2.84	0.09	0.05	0.04

Obtaining value from a feed/forage lab engagement

Florida Ruminant Nutrition Symposium February 27, 2024

Ralph Ward Cumberland Valley Analytical Services

Role of the feed lab

- Execute quality control (proficiency) programs
 - NFTA
 - AAFCO
 - AOCS
 - AACC
 - BIPEA
- Execute under ISO 17025 or other quality assurance program (?).
- Manage internal data in a well-developed LIMS (laboratory information management system).
- Execute and report results in an agreed upon time-frame.
- Communicate and manage client data effectively.
- Effective communications between lab and the client.

Potential roles of the feed lab

- Assist in interpretation of data
- Nutritional support
- Research support
- Method development research
- Provision of data libraries
- Sample collection and transit ("drop box" system)
- Farm sampling services
- Improved time in transit execution

U.S. forage lab industry engagement

- Unique to global ruminant industry
- Many small labs in the 1980's that engaged the new technology of NIR
- Initially, questionable NIR results but set the stage for rapid low-cost analysis
- Services available as the role of forage quality became recognized and ration modeling started in earnest.
- Low cost, rapidly available lab services underwrote the development of the ruminant nutritional services industry in the U.S.
- Lack of external lab quality regulation allowed for labs to keep costs low.
- Routine testing has implemented the concept of process control and mitigation of variation in feed sources.
- Significant value contribution.

U.S. feed lab evolution

- Formerly many small chemistry labs served the U.S. feed industry.
- Small lab ownership was not carried forward, labs closed or were bought out in successive lab aggregations.
- Technology has allowed large feed manufacturers to internalize QC.
- In the U.S. only a few large providers of feed analysis services.
- Forage lab analysis for ruminant purposes now resides with 4 primary labs in the U.S.
Quality control systems vs sample cost

- Extensive quality control system engagement by labs is a requirement in many industries.
 Example: EPA certifications for environmental work.
- In EU in many cases feed lab service provision requires ISO or similar certification.
- These quality control systems drive up costs but don't always bring functional value, especially in forage testing where needs are different.
- Forage and feed lab quality control systems will evolve over time.

As a lab client, becoming familiar with forage and feed lab processes will allow for improved value in the absence of these programs and will assist in keeping costs low and routine analysis affordable.

7

Chemistry versus NIR utilization

• In the U.S., >90% of routine analysis for forage and ingredient quality is by NIR.

NIR History

- Described in literature as early as 1939
- Dr. Karl Norris and coworkers first applied the concept to agricultural products in 1968 with instrumentation at a USDA research lab.
- Dr. John Shenk, a plant scientist at Penn State pushed Dr. Norris to consider the use of NIR for evaluating forage quality (published communication) and in 1976 it was demonstrated that absorption at specific wavelengths was correlated with chemical analysis of forages.

NIR History

- In 1978 a portable unit was designed for use in a van on farm and at hay auctions. This developed into a university extension program using mobile NIR vans in PA, MN, WI, and IL.
- By the early 1980's, several companies were manufacturing commercial units.
- At Penn State, John Shenk and his associate Mark Westerhouse became the world's leading authority on the development and use of NIR for agricultural applications.

What makes a good NIR equation? Just because a lab generates a nutrient value on an NIR report does not mean that the number has value! "Good" calibration statistics do not guarantee a good equation. Large numbers of samples do not guarantee a good equation. Having samples "over many seasons" does not necessarily make for a good equation. Having good calibration statistics is not a guarantee of a good prediction. Is the reported nutrient a NIR prediction, a calculation, or a value based on an NIR calibration. So, what makes for a good NIR equation?

Starch Evaluation by NIR CVAS Calibration Statistics

	N	Mean	RSQ	SEC
Corn Silage	1677	28.1 %	.98	1.01
Corn Grain	1302	71.2 %	.99	.45

New Report Reference Information

- Nutrient Z Score How far is the value from the mean
- Nutrient Global "H" How far is the spectra from neighbors in the population
- Nutrient RPD value What is the prediction value for the nutrient

This information will assist the user in knowing if the reported information has decision value.

What is a "Z score?"

- A Z score is the number of standard deviations that a value is above or below the mean value.
- The Z score is a single value that provides understanding of how far a nutrient value falls from the mean. It is a more descriptive way of understanding how a value relates to a population.

21

What is the sample definition for a population for comparing a sample?

- We often compare samples to "range values", perhaps a mean and plus/minus 1 SD.
- To obtain value from comparisons define objectives and use the appropriate summarized population!
 - Corn distillers
 - Low fat distillers
 - High protein distillers
 - Wheat distillers

• Large population averages do no change significantly over time

• U.S. corn silage analysis averages do not vary much from year to year.

What is a Global H value?

- Statistical Term
- The "H" refers to the "Hat" or "^"
- The value is the squared distance between a sample spectrum and the average spectrum sample in a population
- A low H, or distance, means that the sample belongs to the population (<3)
- A very high H means that the sample probably does not belong to the population (>7?) while an intermediate value (3 to 5) means that the calibration may benefit by adding the sample to the calibration set.
- The Neighborhood H value is the distance of the between a spectra and its nearest neighbor spectra and should be <.6.

25

GH evaluation across 15,000 samples, 3 corn silage calibrations

Three calibrations were evaluated by applying them each to a set of 15,000 sample spectra. The GH values generated for each sample were summarized by calibration.

- Random spectra selection for general nutrients (developed from 1154 samples)
 - GH Average = 1.16, SD = .50
- Linear spectra selection for amino acids (255 samples)
 - GH Average = .82, SD = .48
- Linear spectra selection for uNDF calibrations (305 samples)
 - GH Average = .58, SD = .32

What is RPD?

- RPD is the "ratio of performance to deviation".
- A mathematical definition would be RPD = $(1-R^2)^{-0.5}$.
- Practical definition is the "Standard Error / Nutrient Standard Deviation"

CVAS NIR	Calibration	Statistics for
uN	IDF in Corn	Silage

Constituent	N	Mean	SD	Est. Min	Est. Max	SEC	RSQ	SECV	SD/SECV
NDFom	205	39.311	6.748	19.069	59.554	1.004	0.978	1.181	5.714
uNDFom4HR_DM	305	37.407	6.454	18.045	56.768	1.256	0.962	1.344	4.802
uNDFom8HR_DM	310	31.765	5.629	14.879	48.652	1.364	0.941	1.479	3.807
uNDFom12HR_DM	306	24,999	4,560	11.318	38.680	1.329	0.915	1.454	3.137
uNDFom16HR_DM	307	22,186	4.058	10.011	34,360	1.180	0.916	1.380	2,940
uNDFom20HB_DM	101	19.020	3 101	9 718	28 322	1 029	0.890	1 181	2 625
uNDEom24HR_DM	08	17 214	2 204	7 702	26.025	0.784	0.940	1 099	2 0/2
	200	10.052	2.014	4 200	20.323	1.072	0.0340	1.000	2.343
	290	10.032	3.914	4.509	27.794	1.072	0.925	1.221	3.200
UNDFOM36HR_DIM	95	13.142	2.988	4.179	22.105	0.574	0.963	0.854	3.497
uNDFom48HR_DM	300	12.880	3.332	2.884	22.875	0.924	0.923	1.111	3.000
uNDFom72HR_DM	302	12.030	3.123	2.660	21.400	0.865	0.923	1.009	3.095
uNDFom96HR_DM	97	10.998	2.809	2.573	19.424	0.449	0.974	0.641	4.382
uNDFom120HR_DM	302	10.930	3.011	1.898	19.962	0.955	0.899	1.060	2.840
uNDFom240HR_DM	306	10.307	2.905	1.593	19.020	0.905	0.903	1.040	2,792

29

The NIR Team Representing over 50 years of experience!

NIR Technology Application

31

Handheld NIR Opportunities

- Several models of handheld NIR available in the market.
 - NeoSpectra
 - Trinamix
- Easily portable, few moving parts, advanced spectrophotometric capabilities.
- Good operating apps to work from phone for scanning and basic data management.
- Calibration statistics on dried ground material can be quite good.
- Affordable pricing.

Handheld NIR Limitations

- Sample presentation to the NIR unit is a challenge for obtaining precise and repeatable results.
- Sample homogeneity is a key requirement for precision NIR analysis.
- As-received samples that are coarse and/or have high moisture may not provide reliable results.
- Predictions on ingredients can be acceptable if the material is ground.
- Matching of instruments can create problems in deployment of calibrations.

Sci-Ware CVAS Corn Silage Model									
Parameter	N	Mean	SD	Min	Max	SEC	R2 CV	SECV	SD/SEC
DM	192	35.30	3.77	26.90	42.90	1.26	0.83	1.42	2.70
СР	192	7.84	0.79	6.10	12.10	0.47	0.50	0.54	1.50
NDF	191	37.91	3.56	30.00	60.00	1.98	0.62	2.31	1.50
LIGNIN	192	3.02	0.39	2.00	4.30	0.26	0.45	0.30	1.30
STARCH	185	34.63	5.16	16.50	44.10	2.71	0.62	3.20	1.60
FAT	180	3.26	0.32	2.20	4.10	0.21	0.38	0.25	1.30
ASH	189	3.26	0.32	1.80	7.80	0.24	0.30	0.27	1.20
LACTIC	196	3.42	1.06	1.00	9.00	0.75	0.30	0.90	1.20
ACETIC	195	5.09	1.41	0.30	8.50	0.81	0.50	0.98	1.40
РН	193	3.81	0.15	3.45	4.35	0.09	0.40	0.11	1.40

Parameter	N	Mean	SD	Min	Max	SEC	r2 - CV	SECV	SD/SECV
ACETIC	153	2.01	1.34	-0.78	6.60	0.86	0.56	0.89	1.51
ADF	150	25.43	4.81	12.44	42.77	1.13	0.93	1.23	3.90
AMMONIA	152	0.89	0.30	0.21	1.73	0.14	0.76	0.15	2.03
ASH	151	4.57	1.50	-0.77	9.03	0.74	0.72	0.79	1.90
СР	152	8.12	1.55	4.85	11.67	0.54	0.87	0.57	2.74
FAT	152	3.01	0.44	1.49	4.44	0.23	0.70	0.24	1.81
LACTIC	153	4.45	1.98	0.61	9.33	0.83	0.81	0.86	2.30
LIGNIN	152	3.26	0.66	1.44	5.69	0.30	0.76	0.32	2.06
NDF	153	41.39	7.45	23.38	66.82	2.00	0.92	2.09	3.56
РН	152	3.93	0.18	3.50	4.39	0.09	0.71	0.10	1.84
STARCH	153	29.28	11.49	0.75	51.09	2.93	0.93	2.97	3.87
TFA	152	2.47	0.50	1.05	3.54	0.24	0.75	0.25	2.00
uNDFom240HR_DM	152	11.50	2.52	5.07	21.83	1.29	0.72	1.34	1.89
uNDFom30HR_DM	151	16.90	2.98	8.91	29.31	1.40	0.75	1.49	1.99

Dried ground corn silage model performance

35

Handheld NIR Opportunities

- Match the technology to the optimal use.
- Speed of access to information is only of value as that information allows for time-sensitive decisions to be made.
- Does the technology bring value or require time, capital, administrative, and technical resources?

Use case: Receiving soybeans at the mill

- High oleic soybean genetics are coming into the marketplace.
- Mills receiving these soybeans need to know in real time if the beans being delivered are high oleic.
- The NeoSpectra NIR unit will allow the mill to effectively determine whether soybeans are high oleic or traditional genetics.

39

Future Opportunities VNIR Hyperspectral imaging A technology that uses sensors to collect a broad range of spectral data in the NIR and visible regions on a pixel basis evaluating a material multidimensionally using advanced computing to derive relationships. Used in a variety of quality evaluations such as food quality control There is significant research to apply this in various quality control realms.

Future Opportunities • Reducing analytical error through replication: $SE = \frac{\sigma}{\sqrt{n}} \leftarrow \text{Standard deviation} \\ \leftarrow \text{Number of samples}$

43

Obtaining value from a feed/forage lab engagement

Florida Ruminant Nutrition Symposium February 27, 2024

Ralph Ward Cumberland Valley Analytical Services

Control of milk protein synthesis by amino acids in dairy cows

Sebastian I Arriola Apelo

arriolaapelo@wisc.edu
@arriolaapelolab

arriolaapelolab.andysci.wisc.edu

OUTLINE

- Nitrogen (N) efficiency and emissions
- Limiting amino acids (AA)
- Regulation of milk protein synthesis, . . .
 and beyond
 - Transcription
 - Translation
 - Insulin role
 - Energy sources
- Model performance

reated in **BioRender.con**

Arriola pelo Lab

How much N does a lactating cow waste?

Where is the N going?

Adapted from Chowdhury et al. JDS 2024

Arriola pelo Lab

Is all the N excreted the same? Risk of negative environmental impact of N emissions

Arriola pelo Lab

Is all the N excreted the same? Risk of negative environmental impact of N emissions

Arriola pelo Lab

Risk of negative environmental impact of N emissions

Arriola pelo Lab

Prediction of N partitioning by NASEM

Ruh, . . ., Arriola Apelo, Unpublished data

Arriola pelo Lab

Effect of protein level on N use efficiency

	CTRL	L-CP	P (n=14)
CP %	17.3	15.1	
DMI, lb/d	48.5	46.4	0.37
Milk lb/d	83.4	79.9	0.17
Protein %	2.99	3.01	0.4
MUN mg/dL	9.44	6.91	< 0.01
NUE %	28.6	33.9	<0.01

- 25% increase in N efficiency
- Relative increase in more stable fecal N
- Absolute and relative decrease in urea-N losses

Adapted from Chowdhury et al. JDS 2024

MP effect on MTP yield

POSSITIVE **DIMINISHING** RESPONSE

Lapierre et al. JAS 2012

Arriola pelo Lab

Balancing for His, Lys, Leu, and Met or all the EAA

Haque et al., JDS 2012

Arriola pelo Lab

Limiting AA theory

The first limiting AA (e.g. Met) limits responses to other AA
Substrate based approach, but . . .
Does the cow runs out of AA?
What about fat responses?

Arriola pelo Lab

Independent AA effects – MPY response to jugular infusion of 5 essential AA

Independent, additive responses to different AA contradicts the idea of a first limiting AA

Met, Lys, His, Ile, and Leu became the 5 NASEM AA with independent, additive effects on MPY

Adapted from Yoder et al. JDS 2020

Arriola pelo Lab

Independent AA effects – diet approach

Independent, additive responses using dietary approaches

Killerby, . . . Arriola Apelo, unpublished

Arriola pelo Lab

AA effects on milk fat production

Independent AA effects on milk fat synthesis

Killerby, . . . Arriola Apelo, unpublished
Regulation of milk protein synthesis in the mammary glands

Arriola pelo Lab

Regulation of milk protein's gene transcription

Arriola pelo Lab

Tsiplakou et al., JAPAN, 2015

ANIMAL & DAIRY SCIENCES

Arriola pelo Lab

Regulation of milk protein translation - ISR

tRNA

Arriola Apelo et al., JDS 2014

Arriola pelo Lab

GCN2 sensing of AA in BMEC

Edick et al., JDS 2021

Arriola pelo Lab

GCN2 regulation of lactation

Arriola Apelo, unpublished

Arriola pelo Lab

GCN2 regulation of lactation

Arriola Apelo, unpublished

Arriola pelo Lab

GCN2 regulation of lactation

Arriola Apelo, unpublished

Arriola pelo Lab

GCN2 regulation of lactation

- Limited evidence in vitro and other species
- Probably more relevant under strong AA imbalance

Arriola Apelo, unpublished

mTORC1 regulation of translation, . . . and beyond

Swed et al., PR 2021

Review

Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island

Sebastian I. Arriola Apelo and Dudley W. Lamming

Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.

Pszczolkowski et al., JASB 2020

Arriola pelo Lab

Specific AA regulation of mTORC1

Pszczolkowski, Zhang et al., 2020

Arriola pelo Lab

Insulin role in AA regulation of milk production

Mammary gland extraction of AA at h 6 of clamp

	W	TR	L	.M		p-v	alue
%	SAL	IC	SAL	IC	SEM	AB	IV
Total AA	22.9	24.2	23.2	24.5	5.07	0.95	0.79
EAA	39.5	37.8	38.8	37.1	6.12	0.34	0.69
Group 1 AA	34.5	36.7	31.0	33.2	6.30	0.43	0.64
Group 2 AA	38.9	35.5	46.6	43.2	5.30	0.05	0.39
NEAA	14.2	16.5	11.8	14.1	6.05	0.68	0.70

Pszczolkowski et al., DAE 2022

ENERGY SOURCES

Starch role in milk production

Item	Die	ets (NDF:sta	arch ratios	;)
	T1	T2	T3	T4
Ingredient, % DM				
Alfalfa	15.0	15.0	15.0	15.0
Corn silage	20.0	25.0	30.0	35.0
Oat hay	0.0	5.0	10.0	15.0
Corn	35.0	25.0	15.0	5.0
СР	17.5	17.6	17.6	17.6
NDF	29.8	34.0	37.7	41.2
ADF	18.1	20.5	25.0	27.7
Starch	34.4	28.8	23.2	17.6
NEL†, Mcal/kg	1.81	1.73	1.65	1.57
DMI, kg/day	23.2 ^a	21.7 ^a	20.1 ^b	18.3 ^c
MP¶, g/day	3,029 ^a	2,831 ^{ab}	2,614 ^{bc}	2,462
Milk yield, kg/day	33.2 ^a	33.0 ^a	31.4 ^b	28.3 ^c
FCM+, kg/day	32.2 ^a	32.5 ^a	32.0 ^a	29.2 [°]
ECM‡, kg/day	34.2 ^a	34.1 ^a	33.4 ^b	30.2 [°]
Protein, kg/day	1.06 ^a	1.02 ^b	0.96 ^c	0.85

Adapted from Zhao et al. ASJ 2016

Arriola pelo Lab

Substituting starch decreases:

- Dietary energy density
- Dry matter intake
- VFA production
- MiCP & MP supply
- Lactose, protein, and fat yield

Isocaloric substitution of starch with non-pNDF (+fat) in AA balanced diets

Ingredient, % DM	HS-DAA	HS-BAA	LS-DAA	LS-BAA
Corn silage	37.8	37.8	38.0	38.0
Haylage	33.5	33.5	33.6	33.6
Corn grain	14.7	14.3	8.0	7.6
Soybean hulls	10.7	8.1	14.8	12.2
80:10 C16C18:1	0.0	0.0	1.5	1.5
Soybean meal	0.8	0.8	1.6	1.6
SE-SBM	0.4	0.8	0.4	0.8
Corn gluten meal	0.0	2.4	0.0	2.4
RP-Met/Lys	0.0	0.2	0.0	0.2

Isocaloric substitution of starch with non-pNDF (+fat)

Ingredient, % DM	HS-DAA	HS-BAA	LS-DAA	LS-BAA	
Corn silage	37.8	37.8	38.0	38.0	
Haylage	33.5	33.5	33.6	33.6	
Corn grain	14.7	14.3	8.0	7.6	
Soybean hulls	10.7	8.1	14.8	12.2	
80:10 C16C18:1	0.0	0.0	1.5	1.5	
Soybean meal	0.8	0.8	1.6	1.6	
SE-SBM	0.4	0.8	0.4	0.8	
Corn gluten meal	0.0	2.4	0.0	2.4	
RP-Met/Lys	0.0	0.2	0.0	0.2	
RDP	9.0	9.0	9.0	9.0	
MP	7.5	8.8	7.8	9.0	=MF
NDF	34.5	31	39.6	36.0	
Starch	28.0	28.2	20.5	20.7	
FA-H	3.4	3.4	5.7	5.6	

Arriola pelo Lab

ANIMAL & DAIRY SCIENCES

Arriola pelo Lab

Isocaloric substitution of starch with non-pNDF (+fat) in AA balanced diets

	Н	S	L	S		P - values	
ltem	DAA	BAA	DAA	BAA	ES	AA	ES x AA
DMI, kg/d	31.38	33.97	31.32	33.91	0.86	< 0.001	1.00
Milk kg/d	41.7	45.2	44.0	46.7	< 0.001	< 0.001	0.36
ECM, kg/d	42.4	46.0	46.4	49.4	< 0.001	< 0.001	0.61
Fat, g/d	1567	1674	1794	1878	< 0.001	< 0.001	0.67
Protein, g/d	1188	1356	1235	1380	0.03	< 0.001	0.47
Fat, %	3.85	3.80	4.10	4.05	< 0.001	0.39	0.97
Protein, %	2.87	3.05	2.87	2.95	0.12	< 0.001	0.11

Arriola pelo Lab

Isocaloric substitution of starch with non-pNDF (+fat) in AA balanced diets

_	HS		Ľ	S		P - values	
Item	DAA	BAA	DAA	BAA	ES	AA	ES x AA
Allantoin, mmol/d	445	440	493	465	0.19	0.56	0.68
MiCP, g/d	2164	2610	2251	2638	0.005	< 0.001	0.14
Urine N, g/d	149	195	174	237	< 0.001	< 0.001	0.048
Fecal N, g/d	274	310	262	318	0.81	< 0.001	0.24
PUN, mg/dL	8.4	11.3	10.8	14.1	< 0.001	< 0.001	0.44
MUN, mg/dL	8.3	11.0	9.8	13.3	< 0.001	< 0.001	< 0.01

FUTURE DIRECTIONS

- There is room to reduce N emission by dairy cows, specifically at <u>rumen</u> and post-absorptive levels
- Balancing for specific AA improves milk protein and **milk fat responses**, and . . .
- The mechanisms for the regulation of milk components synthesis have been largely elucidated
- Energy plays a critical role in milk protein synthesis regulation
- However, the mammary has the plasticity to use different energy sources
- Peripheral roles of insulin, post peak-lactation could shadow the effect of glucogenic energy sources

Arriola pelo Lab

AKNOWLEDGEMENTS

Collaborators

Arriola pelo Lab

- Wenli Li
- Jimena Laporta
- Laura Hernandez
- Joao Dorea

Hatch NIFA AFRI NIFA Predoctoral

PERDUE AgriBusiness

ANIMAL & DAIRY SCIENCES

Impact of Supplementing Fatty Acids on Performance and Digestibility in Dairy Cows

Jonas de Souza, PhD Director of Tech Services and R&D Perdue Animal Nutrition

	QUICKPOLL	
N S P	/hy do you chose to feed fatty acid (fat) upplements to lactating cows?	
	I do not feed fatty acid (fat) supplements	7%
	Reduce body weight loss	12%
	Increase yield of milk and milk components	48%
	Improve reproduction	2%

1

- In most feeding situations, C18:0 is the predominant FA available for absorption
- The greatest opportunity will be to improve C18:0 absorption and/or limit its effects on the absorption of other FA

Association of Feeding Lysophospholipids and FA Supplements

	PA	PA+SA	No	LPL	SEM	FA	LPL	Int
DMI, kg/d	27.3	27.5	27.6	27.5	0.81	0.84	0.84	0.21
Milk yield, kg/d	40.4	38.7	39.8	39.3	2.65	0.21	0.70	0.42
ECM, kg/d	39.7	36.8	38.1	38.4	1.03	0.02	0.81	0.34
ECM/DMI, kg/kg	1.44	1.35	1.38	1.40	0.027	<0.01	0.54	0.75
Fat, kg/d	1.60	1.42	1.50	1.52	0.05	<0.01	0.82	0.32
Protein, kg/d	1.30	1.26	1.28	1.28	0.058	0.38	0.91	0.54
Lactose, kg/d	1.96	1.91	1.96	1.92	0.147	0.48	0.60	0.47
Fat, %	4.00	3.74	3.83	3.91	0.277	0.12	0.64	0.68
Protein, %	3.24	3.30	3.24	3.30	0.08	0.42	0.39	0.84
Lactose, %	4.84	4.93	4.90	4.87	0.042	0.03	0.49	0.79
BW initial, kg	691	686	696	681	22.2	0.72	0.35	0.63
BW final, kg	703	701	709	694	18.8	0.91	0.33	0.99

Porter et al. 2024 J. Dairy Sci. In Press

Effect of Fat Supplementation on Fiber Digestibility

Slide courtesy of Lou Armentano, University of Wisconsin

CON PA

SA OA

Effect of Individual FA on Fiber Digestibility

70

NDF digestibility, %

0

180

120

60

Fotal SCFA, mmol/d

Effect of Dietary FA on Performance

Sears et al., 2024. JDS. 107:902-916

Source of Milk Fatty Acids 3 De novo synthesis ACTIVITOR • C4 to C14 • Part of C16 SPECIFIC > Acetate B-hydroxybutyrate RELATIVE Uptake of preformed fatty acids • Part of C16 · All long chain Absorbed from digestive tract 10 8 12 14 NUMBER OF CARBON ATOMS Mobilized from body fat Relative Sp Ac of the milk fatty acids after infusion of Ac-1- C^{14} and D(=)=p hyd .xybutyrate-1,3- C^{14} into the udder of cows. RSA = S.A. in Cx fatty acid S.A in Cy fatty acid Palmquist et al. J. Dairy Sci 52:633.

15

Milk Triglycerides

mol/100mol fatty acid1

	C4:0	C6:0	C8:0	C10:0	C12:0	C14:0	C16:0	C18:0	C18:1
sn-1	1.6	3.1	10.3	15.2	23.7	27.3	44.1	54.0	37.3
sn-2	0.3	3.9	55.2	56.6	62.9	65.6	45.4	16.2	21.2
sn-3	98.1	93.0	34.5	28.2	13.4	7.1	10.5	29.8	41.5

Major TAG in bovine milk fat² Only TAG > 1% are shown Position of individual FA on glycerol backbone may vary

Lipid synthesis is highly coordinated in order to produce a fluid milk fat

- Calculated by Jensen (2002) J. Dairy Sci. 85: 295-350 from Australian butter reported by Parodi (1979) J. Dairy Res. 46:75-81
- 2. Gresti et al. (1993) J. Dairy Sci. 76: 1850-1869. Normandy summer milk

• Results suggest that oleic acid supplementation immediately postpartum may reduce lipolytic responses and improves insulin sensitivity of AT in early lactation dairy cows

Abou-Rjeileh et al. 2023. J. Dairy Sci 106:4306-4323

Fa	atty Acids and Re	pro	
SYMPO F	SIUM: OPTIMIZING ENERGY NU OR REPRODUCING DAIRY COV	JTRITION NS	
Influence of Supplem	ental Fats on Reproductive		
lissues and Perform	ance of Lactating Cows		
lissues and Perform	C. R. STAPLES, ² J. M.	BURKE, and V Department of Dairy University of Flo	V. W. THATCHE and Poultry Science prida, Gainesville 326
	C. R. STAPLES, ² J. M.	BURKE, and V Department of Dairy University of Flo	V. W. THATCHE and Poultry Science rida, Gainesville 326
	C. R. STAPLES, ² J. M. RR or SMD (95% CI)	BURKE, and V lepartment of Dairy University of Flo	V. W. THATCHE and Poultry Science rida, Gainesville 326 <i>P</i> -value
Item Proportion pregnant to service ² Overall	RR or SMD (95% CI) 1.20 (1.04 to 1.38) 1.27 (1.09 to1.45)	BURKE, and V lepartment of Dairy University of Flo 1 ² 19.9	V. W. THATCHE and Poultry Science orida, Gainesville 326 P-value 0.19
Item Item Proportion pregnant to service ² Overall Oileard	RR or SMD (95% CI) 1.20 (1.04 to 1.38) 1.27 (1.09 to 1.45) (Knapp-Hartung) 1.4 (0.01 to 1.42)	BURKE, and V lepartment of Dairy University of Fic 1 ² 19.9	V. W. THATCHE and Poultry Science orida, Gainesville 326 P-value 0.19 0.51
Item Proportion pregnant to service ² Overall Oilseed CSEA	RR or SMD (95% CI) 1.20 (1.04 to 1.38) 1.27 (1.09 to1.45) (Knapp-Hartung) 1.14 (0.91 to 1.43) 1.05 (0.78 to 1.42)	BURKE, and V lepartment of Dairy University of Flo 12 19.9 0.0 31.8	V. W. THATCHE and Poultry Science orida, Gainesville 326 P-value 0.19 0.51 0.16
Item Item Proportion pregnant to service ² Overall Oilseed CSFA Tallow	RR or SMD (95% CI) 1.20 (1.04 to 1.38) 1.27 (1.09 to 1.45) (Knapp-Hartung) 1.14 (0.91 to 1.43) 1.05 (0.78 to 1.42) 1.09 (0.53 to 2.24)	BURKE, and V lepartment of Dairy University of Flo 19.9 0.0 31.8 63.3	V. W. THATCHE and Poultry Science and Poultry Science 226 P-value 0.19 0.51 0.16 0.07

29

Altering n-6 to n-3 Fatty Acids in Early Lactation

What Ingredients Should I use to Provide FA?

	First Source	Second Source
C16:0	Supplements	Oilseeds (Cottonseed)
C18:0	Basal diet (rumen BH)	Supplements
C18:1	Supplements	Oilseeds (HO soybeans)
C18:2	Basal diet	Oilseeds (Cottonseed)
C18:3	Basal diet	Supplements, oilseeds
Omega 3	Supplements	Oilseeds

Considerations for Supplemental Fat

- Fresh / Peak lactation
 - ECM milk response
 - Managing BCS and repro
 - Positive ROI
- Post-peak lactation
 - Primarily milk fat response
 - Depending on production level of the herd
 - Likely positive
- Late lactation cows
 - Consider energy content of diet
 - Likely negative ROI

Can intensification of grazing management help?

	Systems *						
Variables	n	EXT	INT	iCL	SEM	<i>p</i> -Value	
ILW (kg)	60	253	267	256	8.39	0.5940	
FLW (kg)	60	429 ^b	484 ^a	466 ^a	16.76	< 0.0001	
$DMI (kg day^{-1})$	60	9.8 ^a	8.7 ^{ab}	7.5 ^ь	0.31	< 0.0001	
LWG (kg ha ^{-1} year ^{-1})	60	290 ^c	615 ^a	487 ^{ab}	53.98	< 0.0001	
$CH_4 (g day^{-1})$	60	199.7	226.1	209.8	7.3	0.1606	
CH_4 (g kg LW ⁻¹)	60	0.62	0.58	0.61	0.03	0.2047	
CH_4 (kg kg DMI^{-1})	60	0.028 ^a	0.028 ^a	0.029 ^a	0.001	< 0.0001	
gCH4 kgADG ⁻¹ LWG ha ⁻¹ year ⁻¹	60	1.6 a	0.6 c	0.8 ^{bc}	0.09	0.0031	
$kgCH_4$ kg Carcass eq. ⁻¹	60	0.496 ^a	0.250 ^b	0.297 ^b	0.024	0.0047	

• EXT = continuous stocking, low input

• INT = rotational grazing, lime and fertilizer applied

• iCL = integrated crop/livestock: corn harvested for silage in a rotation

• 3 year-study with 6 replicated pastures/trt

Meo-Filho et al. (2022; Agronomy, doi.org/10.3390/agronomy12112738)

Replacing urea with nitrates as a non-protein nitrogen source can decrease enteric methane by 11% (Henry et al., 2020; J. Anim. Sci.)

	Treatment			
	AOP	CTL	SEM	P- value
Intake				
DM, kg/d	6.9	7.3	0.24	0.17
OM, kg/d	6.6	7.0	0.23	0.16
DM, as % of BW	2.62	2.67	0.070	0.58
Methane emissions				
g/d	262.8	237.8	19.03	0.26
g/kg DMI	39.1	32.8	2.73	0.09
g/kg OMI	40.7	34.1	2.85	0.09
g/kg DMD	58.2	50.2	4.15	0.14
g/kg OMD	59.1	51.0	4.20	0.15
g/kg MBW	4.0	3.5	0.28	0.16

THE RUMEN MICROBIOME AND LINKS WITH THE **GENOME AND PRODUCTION IN DAIRY COWS**

35th Annual Meeting

UNIVERSITY of FLORIDA US ANIMAL

02/28/24

Fabio Lima, DVM, MS, PhD, Diplomate ACT

Assist Prof of Livestock & Theriogenology Department of Population Health & Reproduction

幸 UCDAVIS

ASSOCIATIONS WITH PRODUCTION

ASSOCIATIONS WITH RFI

CONTRIBUTIONS TO PREDICTIONS OF PRODUCTIVE TRAITS

GENOME - MICROBIOME LINK TO RFI

ENTERIC FERMENTATION IN RUMINANTS

→ Lower Gut

EXPERIMENTAL DESIGN

Lima et al., 2015. Appl Environ Microbiol. PMID: 25501481

PARITY AND TIME RELATIVE TO CALVING: **Z**RUMEN MICROBIOME

Lima et al., 2015. Appl Environ Microbiol. PMID: 25501481

Ruminant Nutrition Symposium - UF - 2024

PREPARTUM MICROBIOME - HIGHER DIVERSITY

Lima et al., 2015. Appl Environ Microbiol. PMID: 25501481

Ruminant Nutrition Symposium - UF - 2024

Lima et al., 2015. Appl Environ Microbiol. PMID: 25501481

MICROBIOME PREDICTED AND ACTUAL MILK PRODUCTION

Lima et al., 2015. Appl Environ Microbiol. PMID: 25501481

Deltaproteobacteria, Faecalibacterium and Virgibacillus Prevotellaceae, Micrococcaceae and Butyrivibrio

CONCLUDING REMARKS

- Pre and postpartum microbiome: different prevalence of classic cellulolytic and amylolytic bacteria
- Prepartum = increased prevalence of fungi associated with cellulose digestion
- Postpartum = increased prevalence of protozoa associated with starch digestion
- Rumen microbiome model had a high goodness of fit of the regression models for milk production

Lima et al., 2015. Appl Environ Microbiol. PMID: 25501481

HOW DOES THE MICROBIOME CONTRIBUTE TO MILK PRODUCTION EFFICIENCY?

Xue et al., 2020. Microbiome. PMID: 32398126

VETERINARY MEDICINI VETERINARY MEDICINI

ASSOCIATIONS WITH PRODUCTION

CONTRIBUTIONS TO PREDICTIONS OF

PRODUCTIVE TRAITS

GENOME - MICROBIOME LINK TO RFI

ASSOCIATIONS WITH RFI

RUMEN MICROBIOME RESILIENCE AND ASSOCIATION WITH FEED EFFICIENCY

Bach et al. (2020); Connor et al. (2013); Freetly et al. (2020)

Negative RFI = Efficient

Ruminant Nutrition Symposium - UF - 2024

Heritability = 0.14

Reliability = 0.24

Positive RFI = Not efficient

EXPERIMENTAL DESIGN

RUMEN MICROBIOME

LOWER GUT MICROBIOME

*No interaction with **DAY** was detected for the remaining variables

Monteiro et al., 2022. Sci Rep. PMID: 35318351

UCDAVIS VETERINARY MEDICIN VETERINARY MEDICIN ULIMA LAB
	P-Values				
Item	Rumen	Lower Gut			
Day	0.84	0.29			
DMI, kg/d	< 0.01	< 0.001			
Milk production, kg/day					
ECM	< 0.01	< 0.001			
Milk fat	< 0.001	< 0.01			
Milk lactose	< 0.001	< 0.01			
Milk protein	< 0.001	< 0.001			
Feed efficiency					
Residual feed intake, RFI	0.04	0.04			
RFI variables					
MBW, kg	< 0.001	< 0.001			
BEC, Mcal/d	< 0.001	0.26			
NESec, Mcal/d	< 0.01	< 0.001			
RFI variables, unit/kg DMI					
MBW	0.01	0.19			
BEC	0.03	0.01			
NESec	< 0.001	< 0.001			
Production efficiency, kg/kg DMI					
Energy-corrected milk, a.k.a. GFE	0.18	< 0.01			
Milk fat	0.12	0.03			
Milk lactose	0.30	0.19			
Milk protein	0.49	< 0.01			

RESULTS – PERMANOVA CORRECTED FOR DMI

Monteiro et al., 2022. Sci Rep. PMID: 35318351

PCOA: PERMANOVA & LEFSE FOR MBW, BEC, & NESEC

Monteiro et al., 2022. Sci Rep. PMID: 35318351

PCOA:PERMANOVA & LEFSE FOR BEC, & NESEC

Monteiro et al., 2022. Sci Rep. PMID: 35318351

CORRELATION OF RUMEN & LOWER GUT MICROBIOME WITH DMI

CORRELATION OF RUMEN & LOWER GUT MICROBIOME WITH DMI

Monteiro et al., 2022. Sci Rep. PMID: 35318351

CONCLUDING REMARKS

- The microbiome from both locations has temporal stability throughout lactation.
- Yet factors such as feed intake levels significantly shape microbiome diversity.
- The composition of the rumen microbiome was dependent on feed intake.
- In contrast, the lower gut microbiome was less dependent on feed intake and associated with a potentially enhanced ability to digest dietary nutrients.
- Therefore, milk production traits may correlate more with microorganisms in the lower gut than previously expected.

Monteiro et al., 2022. Sci Rep. PMID: 35318351

ASSOCIATIONS WITH PRODUCTION

ASSOCIATIONS WITH RFI

CONTRIBUTIONS TO PREDICTIONS OF PRODUCTIVE TRAITS

GENOME-MICROBIOME LINKS TO RFI

SOURCES OF VARIATION FOR FEED AND MILK PRODUCTION EFFICIENCY

Animal Genetics

Gastrointestinal Fermentation

HYPOTHESIS

The <u>rumen microbiome</u> plays a <u>major role in feed efficiency</u> variation and can be a <u>path to identify highly feed-efficient dairy cows.</u>

Artificial intelligence opportunities

MULTICOLINEARITY

Monteiro et al. Animal Microbiome (2024) 6:5 https://doi.org/10.1186/s42523-024-00289-5 **Animal Microbiome**

RESEARCH

Open Access

29175

An artificial intelligence approach of feature engineering and ensemble methods depicts the rumen microbiome contribution to feed efficiency in dairy cows

Hugo F. Monteiro¹, Caio C. Figueiredo^{2,3}, Bruna Mion⁴, José Eduardo P. Santos⁵, Rafael S. Bisinotto³, Francisco Peñagaricano⁶, Eduardo S. Ribeiro⁴, Mariana N. Marinho⁵, Roney Zimpel⁵, Ana Carolina da Silva⁵, Adeoye Oyebade⁵, Richard R. Lobo⁵, Wilson M. Coelho Jr¹, Phillip M. G. Peixoto³, Maria B. Ugarte Marin³, Sebastian G. Umaña-Sedó³, Tomás D. G. Rojas³, Modesto Elvir-Hernandez³, Flávio S. Schenkel⁴, Bart C. Weimer¹, C. Titus Brown¹, Ermias Kebreab⁷ and Fábio S. Lima^{1*}

HIDDEN PATTERNS IN COMPOSITIONAL DATA

1.B.

Example of the proposed method to explore the rumen microbiome variation to production traits

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

PREDICTING DRY MATTER INTAKE (DMI)

Table 1. Results from a mixed model based on Type 3 sum of squares for dry matter intake and gross milk production efficiency traits in 454 lactating Holstein cows in the US and Canada

Item	\mathbb{R}^2	Estimate	SE^1	P-value
Dry matter intake, kg/d				
$Parity^2$	0.02	0.87	0.22	< 0.001
MBW, kg	0.12	0.09	0.01	< 0.001
BEC, Mcal/d $R^2 = 0.64$	0.05	0.17	0.02	< 0.001
NESec, Mcal/d	0.39	0.37	0.02	< 0.001
Treatment (random effect)	0.07			
Residual (residual feed intake; RFI)	0.36			

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

DISTRIBUTION OF RFI IN THE STUDIED POPULATION

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

RUMEN MICROBIOME DIFFERENCES (N = 454)

Monteiro et al., 2022. J Dairy Sci. 106(1):141-142

INCLUDING THE MICROBIOME ON DMI PREDICTION

+ Microbiome + e

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

30

USING THE MICROBIOME TO PREDICT RFI

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

RFI, kg/d = Microbiome + e

USING THE MICROBIOME TO PREDICT RFI

Ruminant Nutrition Symposium - UF - 2024

JCDAVIS 🦭

THE MICROBIOME AND MILK PRODUCTION EFFICIENCY

MILK PROTEIN EFFICIENCY

Monteiro et al., 2022. J Dairy Sci. 106(1):141-142

BACTERIA ARE ASSOCIATED WITH RFI

-0.25 -0.00 --0.25

0.17

0.17

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

UCDAVIS 🕅 TEDINARY MED

HYPOTHETICAL SELECTION FOR RFI, AND THE RUMEN MICROBIOME INTERPLAY WITH GENOMIC PTA, AND PHENOTYPIC RFI

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

- Rumen microbiome composition explains a significant portion of the variation in RFI, presenting a promising site of exploration for future improvements in predictive models to decrease the dairy sector's carbon footprint.
- The associations of RFI, as well as MFE, MPE, and their residuals with the rumen microbiome, unraveled through an ensemble method, further indicate key microbial players that could be targeted further to evaluate their effect on the efficiency of dairy cows.
- Additionally, the predictability of heritable traits by the rumen microbiome underscores the need for future research to dissect host-microbiome interactions in shaping feed and milk production efficiency.

Monteiro et al., 2024. Animal Microbiome. 6:5 PMID:38321581

Ruminant Nutrition Symposium - UF - 2024

ASSOCIATIONS WITH PRODUCTION

CONTRIBUTIONS TO PREDICTIONS OF PRODUCTIVE TRAITS

GENOME-MICROBIOME LINKS TO RFI

ASSOCIATIONS WITH RFI

J. Dairy Sci. TBC https://doi.org/10.3168/jds.2023-23869

 $^{\odot}$ TBC, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association $^{
m 0}.$ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Host and rumen microbiome contributions to feed efficiency traits in Holstein cows

Guillermo Martinez Boggio,1* [©] Hugo F. Monteiro,² [©] Fabio S. Lima,² [©] Caio C. Figueiredo,³ [©] Rafael S. Bisinotto,⁴ José E. P. Santos,⁵ Bruna Mion,⁶ Flavio S. Schenkel,⁶ Eduardo S. Ribeiro,⁶ Kent A.

Weigel,¹ and Francisco Peñagaricano¹ bio 10 Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706 ²Department of Population Health and Reproduction, University of California, Davis 95616 ³Department of Veterinary Clinical Sciences, Washington State University, Pullman 99163 ⁴Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32610 ⁵Department of Animal Sciences, University of Florida, Gainesville 32611 ⁶Department of Animal Biosciences, University of Guelph, Guelph N1G-2W1

Host and symbiont genes that alone and/or together affect a holobiont phenotype

Coevolved host and symbiont genes that affect a holobiont phenotype

Host genes and symbionts that do not affect a holobiont phenotype

Environmental microbes that are not part of the holobiont

Boggio et al., 2024. J Dairy Sci. TBC. PMID: 38135048

MODELS INCLUDING GENOME, MICROBIOME, AND GENOME-BY-MICROBIOME INTERACTION EFFECTS TO EXPLAIN THE PHENOTYPE

Boggio et al., 2024. J Dairy Sci. TBC. PMID: 38135048

VARIANCE, HERITABILITY, DIRECT HERITABILITY, MICROBIALITY, AND HOLOBIABILITY

Table 2. Estimates of variance components, and heritability, direct heritability, microbiability, genome-by-microbiome interaction, and holobiability for dry matter intake, milk energy, and residual feed intake using three different models

Model	Trait	DIC	σ_g^2	$\sigma_{g_d}^2$	σ_m^2	σ^2_{gxm}	σ_{ho}^2	σ_e^2	h^2	h_d^2	m^2	$g \times m^2$	ho^2
G	DMI	1968.6 2.	37 ± 0.58					3.33 ± 0.50	0.41 ± 0.09				16
GM	DMI	1909.1		1.56 ± 0.42	1.37 ± 0.36		2.92 ± 0.51	2.68 ± 0.43		0.28 ± 0.07	0.24 ± 0.06		0.52 ± 0.07
GMO	DMI	1882.3		1.31 ± 0.39	1.18 ± 0.33	0.84 ± 0.26	3.33 ± 0.50	2.37 ± 0.41		0.23 ± 0.06	0.21 ± 0.05	0.15 ± 0.04	0.58 ± 0.07
G	NESec	2478.5 8.	16 ± 2.00					10.1 ± 1.72	0.45 ± 0.09				
GM	NESec	2415.6		5.56 ± 1.55	4.88 ± 1.33		10.4 ± 1.87	8.04 ± 1.49		0.30 ± 0.08	0.26 ± 0.06		0.56 ± 0.08
GMO	NESec	2384.7		4.50 ± 1.39	4.20 ± 1.23	2.77 ± 0.95	11.6 ± 1.77	7.07 ± 1.40		0.24 ± 0.07	0.22 ± 0.06	0.15 ± 0.05	0.62 ± 0.08
G	RFI	1556.9 0.	61 ± 0.17					1.46 ± 0.17	0.29 ± 0.08				
GM	RFI	1529.3		0.40 ± 0.13	0.38 ± 0.11		0.78 ± 0.18	1.30 ± 0.17		0.19 ± 0.06	0.18 ± 0.05		0.37 ± 0.08
GMO	RFI	1513.9		0.33 ± 0.13	0.31 ± 0.10	0.28 ± 0.11	0.91 ± 0.19	1.18 ± 0.18		0.16 ± 0.06	0.15 ± 0.05	0.13 ± 0.05	0.43 ± 0.08

Models: G = models including only the cow genome, GM = models including cow genome and rumen microbiome; GMO = models including cow genome, rumen microbiome, and genome-by-microbiome interaction.

Variance components and parameters: $\sigma_g^2 =$ additive genetic variance; $\sigma_{gd}^2 =$ direct additive genetic variance; $\sigma_m^2 =$ microbiome variance; $\sigma_{gxm}^2 =$ genome-by-microbiome interaction variance; $\sigma_{ho}^2 =$ for model GM is the total variance explained by genome and microbiome, and for model GMO is the variance explained by the holobiont; $\sigma_e^2 =$ residual variance; $h^2 =$ heritability; $h_d^2 =$ direct heritability; $m^2 =$ microbiability; $g \times m^2 =$ genome-by-microbiome interaction; $ho^2 =$ for model GM is the sum of h_d^2 and m^2 , and for model GMO is holobiability.

Traits: DMI = dry matter intake; NESec = net energy secreted in milk; RFI = residual feed intake.

Boggio et al., 2024. J Dairy Sci. TBC. PMID: 38135048

PROPORTION OF VARIANCE EXPLAINED BY MODELS

PREDICTIVE ABILITY OF KERNEL-BASED MODELS

Boggio et al., 2024. J Dairy Sci. TBC. PMID: 38135048

Model GM Model GMO Model G

JCDAVIS

RFI

- Incorporating the rumen microbiome information in addition to genomic data allows for revealing the relative effects of the host genome and the microbiome on feed efficiency traits in dairy cattle.
- Rumen microbiome data can be used to estimate host direct and indirect genetic effects on feed efficiency.
- Indeed, the differences obtained between the heritability and the direct heritability strongly suggest that the microbiome mediates part of the host genetic effect.
- The holobiont model, which incorporates the host genome-by-microbiome interaction, provides further insights into the biological mechanisms underlying dairy cow feed efficiency.

Boggio et al., 2024. J Dairy Sci. TBC. PMID: 38135048

Ruminant Nutrition Symposium - UF - 2024

Hugo Monteiro UC Davis

Guillermo Boggio UW Madison

JNIVERSITY

FGUELPH

UF

UNIVERSITY of **FLORIDA**

ACKNOWLEDGEMENTS

J.E.P. Santos UF

E. Ribeiro U. Guelph

F. Penagaricano **UW Madison**

R.S. Bisinotto UF

- Mariana Nehme Marinho
 - Bruna Mion
 - Roney Zimpel
 - Ana Carolina da Silva
 - Ade Oyebade
 - **Richard Lobo**
 - Phillip Peixoto
- Maria B. Ugarte Marin

FUNDING:

F. Shenkel U. Guelph

UNIVERSITY OF CALIFORNIA

B. Weimer UC Davis

Caio Figueiredo UF & WSU

Titus Brown UC Davis

Fabio Lima, DVM, PhD, MS, Diplomate ACT Assistant Professor of Livestock Health and Theriogenology Contact: <u>falima@ucdavis.edu</u>

Variation in Sire Field Fertility in Fixed-Time Artificial Insemination Programs - GERAR

Insemination records only included cows with adequate body condition scores and sires with at least 100 inseminations.

Al Center	Number of Al	Average PR/AI	Range in Sire PR/AI
Α	45,231	54.8	38.3 to 79.1
В	128,443	55.4	30.9 to 70.2
С	9,434	50.5	38.1 to 57.9
D	19,311	56.7	42.8 to 76.9
E	25,522	54.8	28.2 to 72.4
F	32,397	52.5	32.1 to 62.7
G	7,042	54.9	22.8 to 81.3

I UNIVERSITY OF GEORGIA

Vasconcelos et al., 2017; SBTE Proceedings 3

3

Variation in Sire Field Fertility in Fixed-Time Artificial Insemination Programs– Controlled Study

n = 4,866					
Sire	Number of Al	Average PR/AI			
Α	1,050	48.1			
В	1,058	47.7			
С	1,206	40.7			
D	747	45.5			
E	805	43.1			

Factors influencing this variation in sire PR/AI are still poorly understood

🕅 UNIVERSITY OF GEORGIA

UNIVERSITY OF GEORGIA

🛄 UNIVERSITY OF GEORGIA

Images from Fontes Lab 16

Effects of Treatment on Bull Sexual Development

• Diets successfully induced changes in body weight

• Diets successfully induced changes in metabolic hormones (IGF-1, insulin, leptin)

	Plane of Nutrition				
ltem	Hi-Hi	Hi-Lo	Lo-Lo	Lo-Hi	
Age at Puberty, d	298 + 6.3ª	283 + 5.6ª	319 + 3.9 ^b	323 + 6.5 ^b	
Age at sexual maturation, d	331 ± 7.1 ª	314 ± 7.5 ª	343 ± 7.1 ^b	352 ± 3.7 ^b	
Paired testis weight at 72 wks of age, g	660 ± 28.5	659 ± 19.8	629 ± 19.7	594 ± 26.6	

Age at puberty: 50 million sperm with at least 10% motility Age at sexual maturation: Passed a breeding soundness examination

🕅 UNIVERSITY OF GEORGIA

```
Byrne et al., 2018. J. Dairy Sci. 104:3447-3459 19
```


Effects of Plane of Nutrition on Mature Bull Fertility

• Treatments (112-day feeding period):

- Positive Energy Balance gain 12.5% of body weight
- Negative Energy Balance lose 12.5% of body weight

	Trea	tment		
tem	NEG	POS	SEM	P-value
Rump fat, cm				
Beginning	0.42	0.48	0.09	0.68
End	0.29	0.90	0.11	0.001
Rib Fat, cm				
Beginning	0.38	0.40	0.05	0.76
End	0.25	0.64	0.10	0.02
LM area, cm				
Beginning	95.7	91.5	3.74	0.43
End	84.5	106.1	3.42	<0.001
Intramuscular fat,%				
Beginning	3.21	3.31	0.29	0.81
End	2.55	3.49	0.36	0.08

UNIVERSITY OF GEORGIA

Dahlen et al., 2020. J. Anim. Sci. (Abstract) 23

23

🛄 UNIVERSITY OF GEORGIA

Dahlen et al., 2020. J. Anim. Sci. (Abstract) 24

Nutritional management to optimize cow-calf production in Southeast

2024 Florida Ruminant Nutrition Symposium

Philipe Moriel - Associate Professor Range Cattle Research & Education Center - University of Florida, Ona, FL

Introduction

Retrospective analyses of cow BCS vs. nutrition

- BCS at calving vs. post-calving BCS change
- BCS at weaning vs. precalving supplementation

Precalving supplementation strategies

- Timing, frequency, feed additives

Nutrition of heat stressed heifers

- Stair-step strategy to offset heat stress

Heat stress in pregnant females

- Unexpected results in cow vs. offspring

Studios acros	<u>c Unito</u>	d Stat						^{abc} P < 0.05
Studies across	s onice	u Stat	.85					
BCS at cal	ving vs. Pre	gnancy Ra	te, %	ļ	BCS at	Da	ys to	
	Body c	ondition	score		calving	resum	e estr	us
	3	t calving		· ·	3	8	3 9 ª	
	4	5	6	· '	4	-	۱ n b	
Spitzer et al. (1995)		80 ^b	96°	- 1	4	,	0-	
Lake et al. (2005)	64ª	-	89 ^b	1	5	5	;9 ^b	
Lents et al (2008)	56ª	88 ^b	-	ļ	6	5	;2 b	
Bohnert et al (2013)	79ª	92 ^b	-	_		_		
Average	63.8	86.7	92.5	'	7	3	\$1°	
					Houghton et	t al. (1990)	JAS 68:1	438
	Calving distribution							
ltem	First Secon		Second	d Third				
		21 (Jays	21 days	; 21 c	days	SEM	P-value
Weaning body weight,	lb	48	³ 2 ^a	469 ^b	43	34 ^c	10.8	<0.01
Body weight start of br	reeding, lb	65	2 ^a	643 ^b	60)8 ^c	9.2	<0.01
Pubertal at start of bre	eding, %	70	Ja	58 ^b	39	9 ^c	9.35	<0.01
Pregnancy rate, %		91	Ja	86 ^b	78	8 ^c	5.62	0.02
					<u> </u>	Funston (et al. (201	2; JAS 90:5118

Retrospective data analyses Moriel et al. (2024) Anim. Rep. Sci. *in press*

2 statistical analyses:

Maternal BCS at calving and postpartum BCS change

- Calving: BCS < 5 or BCS ≥ 5
- Within each calving BCS group, cows that lost (LO), maintained (MA), or gained (GA) BCS from calving until the start of the breeding season

Maternal initial BCS and prepartum supplementation

- Weaning: BCS < 5 vs. BCS ≥ 5
- Within each initial BCS group, cows that received (SUP) or not (NOSUP) prepartum supplementation

Body condition score at calving

Summary of 6 studies at the Range Cattle REC (2017 to 2022; Ona, FL) 1,188 Brangus mature cows grazing bahiagrass

	BCS at calving			
_	BCS < 5	BCS > 5	SEM	P-value
n	208	980		
Cow BCS				
Calving	4.51	5.56	0.078	<0.01
Start of breeding season	4.51	5.51	0.082	<0.01
End of breeding season	4.27	5.15	0.105	<0.01
Weaning	4.77	5.59	0.065	<0.01
First calf crop				
Body weight at birth, lb	75.2	79.3	1.12	<0.01
Body weight at weaning, lb	524	541	14.4	0.04
Pregnant with 2 nd calf, %	81	91	2.53	<0.01
Calved live 2 nd calf, % of total	73	82	2.95	0.005
Calving interval, days	371	364	2.4	0.02
Calving distribution, % of total calves				
First 30 days	57	63	4.0	0.18
Second 30 days	34	29	4.8	0.23
Third 30 days	9	8	2.5	0.65

10

Body condition score change post-calving Summary of 6 studies at the Range Cattle REC (2017 to 2022; Ona, FL)

1,188 Brangus mature cows grazing bahiagrass

	Post	-calving BC			
	LOST	MAIN	GAIN	SEM	P-value
n	757	271	160		
BCS change from calving to breeding	-0.69	-0.02	0.51	0.05	<0.01
Cow BCS					
Start of breeding season	4.57 ^a	4.96 ^b	5.51 ^c	0.08	<0.01
First calf crop					
Body weight at weaning, lb	536	529	533	15.7	0.47
Pregnant with 2 nd calf, % of total	82 ^a	87 ^b	88 ^b	2.8	0.07
Calving distribution, % of total calves					
First 30 days	52 ^a	66 ^b	63 ^b	4.5	0.03
Second 30 days	39 ^b	25 ^a	31 ^{ab}	4.9	0.03
Third 30 days	9	9	6.5	2.6	0.71
^{3c} P < 0.05					

BCS	at ca	lving vs	. Post-	calving	BCS	change
-----	-------	----------	---------	---------	-----	--------

Cow BCS at calving	Cow BCS change from calving to breeding	Pregnant, % of total	Calving within first 30 days of calving season, % of total
	Lost (n = 93)	74.5 ^a	35.0ª
Below 5	\longrightarrow Maintained (n = 55)	84.8 ^b	67.2 ^b
	Gained (n = 60)	83.7 ^b	68.4 ^b
	Lost (n = 664)	88.3 ^{bc}	64.2 ^b
Above 5	Maintained (n = 216)	90.4 ^c	68.1 ^b
	Gained (n = 100)	93.2 ^c	57.6 ^b

Recover BCS after calving does not fully compensate for thin BCS at calving.

Precalving supplementation of protein/energy in Florida

Summary of 6 studies at the Range Cattle REC (2017 to 2022; Ona, FL) Brangus mature cows on bahiagrass and supplemented **on average at 2.5 lb/day for 70 days before calving**

n = 1,188 cow-calf pairs								
BCS at wear BCS >	ition							
	BCS	< 5	BCS	≥ 5				
Item	NOSUP	SUP	NOSUP	SUP	SEM	P-value		
n	106	125	557	400				
Cow BCS								
Weaning (July/August)	4.59 ^a	4.64 ^a	5.81 ^c	5.72 ^b	0.075	<0.01		
Calving	4.51 ^a	5.29 ^b	5.37 ^b	5.97 ^c	0.172			
Start of breeding season	4.18 ^a	4.82 ^b	5.02 ^c	5.35 ^d	0.108			
End of breeding season	4.11ª	4.54 ^b	4.84 ^c	5.08 ^d	0.104			
Weaning (Following year)	4.56ª	4.79 ^b	5.37 ^c	5.45 ^c	0.087			

Precalving supplementation of protein/energy in Florida

Summary of 6 studies at the Range Cattle REC (2017 to 2022; Ona, FL) Brangus mature cows on bahiagrass and supplemented **on average at 2.5 lb/day for 70 days before calving**

Results – Post-weaning immune response of steers

Steer innate and humoral immune response

		Treatment			P -	value
Item	CON	SUP42	SUP84	SEM	Trt	Trt × Day
Plasma cortisol, µg/dL	2.13	2.29	2.15	0.16	0.76	0.79
Plasma haptoglobin, mg/mL	0.25	0.30	0.28	0.02	0.40	0.78
Serum BVDV-1						
Titers, log ₂	3.46	4.41	3.91	0.38	0.21	0.87
Seroconversion, % total	78	85	88	7.2	0.64	0.27
Serum PI3						
Titers, log2	2.53ª	4.30 ^b	3.73 ^{ab}	0.44	0.07	0.51
Seroconversion, % total						
day 347	21 ª	63 ^b	54 ^b	11	0.32	0.01
day 389	80	82	83			

 ${}^{\rm ab}P \leq 0.05$

		Treatment			
ltem	CON	SUP42	SUP84	SEM	P - value
Hot Carcass Weight, kg	337	338	338	5.5	0.98
Dressing Percent, %	59.7	60.5	59.8	0.30	0.12
12th rib fat thickness, cm	1.77	1.69	1.62	0.089	0.49
Longissimus muscle area, cm ²	79.2	80.8	80.7	1.58	0.74
КРН, %	2.92	2.62	2.67	0.13	0.20
Yield Grade	3.8	3.6	3.5	0.14	0.33
Marbling	521 ª	570 ^b	545 ^{ab}	15	0.07
Average choice, %	5 ª	36 ^b	17 ^{ab}	9.3	0.10
Low choice, %	72	46	58	10	0.17
Select, %	23	19	25	8	0.87

UF FLORIDA

Beef Enhancement Funds Florida Cattlemen's Association

Fetal Programming

Frequency of supplementation

Introduction

• Direct-fed Microbials

- Modulate rumen fermentation characteristics
- Promote establishment of beneficial rumen microflora
- Enhance fiber and overall nutrient digestibility (Krehbiel et al., 2003; Pan et al., 2022; Cappellozza et al., 2023)
- Bacillus spp.
 - Inhibition of harmful pathogens
 - Biofilm and mucin formation
 - Enhance production of wide variety of fibrolytic, amylolytic, proteolytic, and lipolytic enzymes (Copani et al., 2020; Segura et al., 2020; Santano et al., 2020; Elshaghabee et al., 2017; Luise et al., 2022)

<i>Bacillus</i> sup	plementa	tion fror	n day 0 to 242
/laternal tr	eatment		P-value
CON	BAC	SEM	Treatment
96	91	4.22	0.45
142	135	4.10	0.22
48	54	9.21	0.63
62	65	0.99	0.34
89	89	5.35	0.97
84	88	7.83	0.76
554	556	4.60	0.61
52	52	12.00	0.94
	Paternal tr ON 96 142 48 62 89 84 554 52	Baternal treatment CON BAC 96 91 142 135 48 54 62 65 89 89 84 88 554 556 52 52	Iaternal treatment CON BAC SEM 96 91 4.22 142 135 4.10 48 54 9.21 62 65 0.99 89 89 5.35 84 88 7.83 554 556 4.60 52 52 12.00

Boosting reproduction without increasing feed costs of beef heifers in Florida Funded by Florida Cattlemen Enhancement Board - 2019/2020

Sep. 2019 to June 2020 (Yr 1) and Sep. 2020 to June 2021 (Yr 2)

- 64 Brangus heifers per year assigned to 16 bahiagrass pastures
- Treatments assigned to pastures (6 pastures/treatment/year):

CONTROL = concentrate supplementation at **1.50% of body weight** from September until the start of the estrous synchronization (November; <u>day 0 to 100</u>)

STAIRSTEP = concentrate supplementation at **1.05% of body weight** from Aug. to Sep. (day 0 to 49) + **1.95% of body weight** until the start of the estrous synchr. (day 50 to 100).

After day 100, all heifers were managed similarly:

Al from day 113 to 115; Timed-Al on day 115 Bulls from day 121-211 Concentrate supp. at 1.50% of BW until day 211

Moriel et al. (2022). J. Anim. Sci. 100(4):skac107. doi:10.1093/jas/skac107

Intravaginal Temperature and Thermal Humidity Index

51

Growth performance and Supplement DM offered d 0-100 (Aug 13th to Nov 21th) CON = Suppl. 1.50% of BW d 0-100 SST = Suppl. 1.05% of BW d 0-49 Suppl. 1.95% of BW d 50-100 Supplementation strategy Item CON SEM P-value SST ADG, lb/day day 0 to 49 (Aug to Sep) 1.24 0.056 1.17 0.35 day 49 to 100 (Sep to Nov) 1.22 1.61 0.061 < 0.001 day 0 to 100 (Aug to Nov) 1.23 1.39 0.043 0.01 Total supplement DM offered, lb/heifer day 0 to 100 (Aug to Nov) 925 933 13.5 0.66 CON SST **₽** 750 *P* = 0.01 veight, 200 200 200 P = 0.49P = 0.91 **∂** 600 **0** 550 Supp. × day P = 0.002684 669 Heifer 500 607 603 548 450 400 0 49 100 Moriel et al. (2022). J. Anim. Sci. 100(4):skac107. doi:10.1093/jas/skac107 Day of the study

Reproductive performance

d 100-211 (Nov 21th to Mar 11th)

CON = Suppl. 1.50% of BW d 0-100 SST = Suppl. 1.05% of BW d 0-49

Suppl. 1.95% of BW d 50-100

	Supplementa			
Item	CON	SST	SEM	P-value
Pubertal heifers, % of total				
day 91	69.2	66.1	4.82	0.67
day 101	73.5	75.7	4.82	0.76
Reproductive tract score, day 101	4.48	4.54	0.119	0.71
Heifers in estrus, % of total				
day 101 to 105	28.3	28.9	5.78	0.94
day 113 to 115	64.9	63.9	5.78	0.90
Pregnant heifers, % of total				
AI (day 154; Dec)	39.1	47.1	6.11	0.36
Final (day 275; Apr)	84.4	94.8	3.62	0.04

Stair-step strategy reduced vaginal temperature during heat stress and improved growth and reproductive performance of heifers, without increasing feed costs

Moriel et al. (2022). J. Anim. Sci. 100(4):skac107. doi:10.1093/jas/skac107

UF FLORIDA

Impacts of pre- and postpartum heat stress abatement on physiology and performance of grazing Bos indicusinfluenced cow-calf pairs

Izquierdo et al. (2023) J. Anim. Sci. 101:skad250. doi:10.1093/jas/skad250

1.78

0.057

Offspring Plasma Analyses									
	Materr	nal treatm	P-value						
Item	NSH	SH		SEM	Shade	Shade × day			
Plasma cortisol, ug/dL	2.43	2.42		0.149	0.93	0.15			
Plasma Hp, mg/mL	0.405	0.468		0.0235	0.06	0.80			
Ν	Aaternal treatment				P-value				
Item	NSH	SH	SEM	P-value	Shade	Shade × day			
BRSV									
Seroconversion, % of total									
Day 222	77	50	8.57	0.02	0.23	0.01			
Day 236	69	50	8.57	0.10					
Day 268	80	96	8.57	0.19					
Serum titers, log2									
Day 222	2.00	1.31	0.285	0.08	0.26	0.09			
Day 236	1.85	1.27	0.285	0.15					
Day 268	2.69	3.00	0.291	0.44					
Izquierdo et al. (2023) J. Anim. Sci. 101:skad250. <u>doi:10.1093/jas/skad250</u>									

