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ABSTRACT

Phenotypes from the December 2018 US national 
genetic evaluations were used to compute effects of the 
polled haplotype in US Brown Swiss (BS), Holstein 
(HO), and Jersey (JE) cattle on milk, fat, and protein 
yields, somatic cell score, single-trait productive life, 
daughter pregnancy rate, heifer conception rate, and 
cow conception rate. Lactation records pre-adjusted 
for nongenetic factors and direct genomic values were 
used to estimate phenotypic and genetic effects of the 
polled haplotype, respectively. No phenotypic or direct 
genomic values effects were different from zero for any 
trait in any breed. Genomic PTA (gPTA) for the life-
time net merit (NM$) selection index of bulls born since 
January 1, 2012, that received a marketing code from 
the National Association of Animal Breeders (Madison, 
WI), and cows born on or after January 1, 2015, were 
compared to determine whether there was a systematic 
benefit to polled or horned genetics. Horned bulls had 
the highest average gPTA for NM$ in all 3 breeds, but 
that difference was significant only in HO and JE (HO: 
615.4 ± 1.9, JE: 402.3 ± 3.4). Homozygous polled BS 
cows had significantly higher average gPTA for NM$ 
than their heterozygous polled or horned contempo-
raries (PP = 261.4 ± 43.5, Pp = 166.1 ± 13.7, pp = 
174.1 ± 1.8), but the sample size was very small (n = 
9). In HO and JE, horned cows had higher gPTA for 
NM$ (HO = 378.3 ± 0.2, JE = 283.3 ± 0.3). Selection 
for polled cattle should not have a detrimental effect on 
yield, fertility, or longevity, but these differences show 
that, in the short term, selection for polled over horned 
cattle will result in lower rates of genetic gain.
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Short Communication

The rapid growth in the number of genotyped dairy 
cattle, which recently surpassed 3 million in the United 
States, has resulted in the identification of several re-
cessive disorders, permitted the determination of car-
rier status of genotyped animals using haplotypes in 
place of laboratory tests (Cole et al., 2018) and enabled 
the calculation of haplotype effects on production and 
fitness traits (Cole et al., 2016). Schafberg and Swalve 
(2015) provide a comprehensive history of polled cattle, 
and there is increasing interest in the polled phenotype 
(e.g., Thompson et al., 2017) for purposes of improving 
animal welfare. Soller et al. (1963) reported an associa-
tion between polledness and infertility in male Saanen 
goats, and there are anecdotal reports that polled 
dairy cattle have reduced fertility compared with their 
horned counterparts. Several studies have shown that 
polled and horned cattle have similar genetic merit for 
calving, health, growth, and reproduction traits (Frisch 
et al., 1980; Kommisrud and Steine, 1997; Goonewar-
dene et al., 1999a,b; Lamminger et al., 2000). However, 
polled Holstein cattle were shown to have lower average 
genetic merit than their horned contemporaries (Spur-
lock et al., 2014; Windig et al., 2015). The purpose of 
this study was to determine the phenotypic and genetic 
effects of the polled haplotype in the US Brown Swiss 
(BS), Holstein (HO), and Jersey (JE) breeds on 8 
yield and fitness traits.

The data used in this analysis consisted of phenotypes 
and direct genomic values (DGV) from the December 
2018 US national genetic evaluation for genotyped 
daughters of genotyped bulls in the US Brown Swiss, 
Holstein, and Jersey breeds. This ensured that polled 
haplotype status was known for both cows and bulls. 
The 8 traits included in this study were milk, fat, and 
protein yields, SCS, single-trait productive life (PL), 
daughter pregnancy rate (DPR), heifer conception 
rate (HCR), and cow conception rate (CCR). Cows 
were required to have phenotypes for all traits in the 
analysis, and the data set included all lactations in the 

Short communication: Phenotypic and genetic effects 
of the polled haplotype on yield, longevity, and fertility 
in US Brown Swiss, Holstein, and Jersey cattle
J. B. Cole* and D. J. Null
Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350

 

Received February 22, 2019.
Accepted May 3, 2019.
*Corresponding author: john.cole@​ars​.usda​.gov



8248 COLE AND NULL

Journal of Dairy Science Vol. 102 No. 9, 2019

database except for PL and HCR, which have single 
(lifetime) values. Genotypes for all cows were imputed 
to a common set of 79,294 SNP used for US genomic 
evaluations with findhap.f90 version 3 (VanRaden et 
al., 2011). Counts of bulls and cows by breed and polled 
haplotype status are provided in Table 1.

Two distinct mutations on chromosome 1 are re-
sponsible for polledness in taurine dairy cattle. The 
80-kb Friesian deletion is responsible for most polled 
Holstein and Jersey cattle (Rothammer et al., 2014), 
whereas the 212-bp Celtic indel is responsible for most 
polled beef and dual-purpose cattle (Medugorac et al., 
2012). Polled status is sent by the genotyping labo-
ratories but their reports do not distinguish between 
the 2 mutations, and older genotyping arrays included 
only SNP tracking the Friesian mutation. Most chips 
now include the Celtic haplotype, too, but a single tag 
SNP at 2,578,598 bp on chromosome 1 is used to track 
both mutations in the US population. It is possible, 
in principle, to determine the specific polled mutation 
carried by an animal but, in practice, it is much easier 
to track and distribute to the industry general status 
(polled/horned) rather than the individual mutation 
carried. Most animals included in this study had direct 
genotypes (BS = 3,918; HO = 787,995; JE = 142,239) 
rather than imputed genotypes (BS = 127; HO = 3,391; 
JE = 465).

A fixed-effects model was fitted to phenotypic and 
genetic values for all traits using PROC GLM in SAS 
9.4 (TS1M2) for Linux (SAS Institute Inc., Cary, NC):

	 yijk = μ + sirej + statusk + eijk,	

where yijk is the phenotypic value or DGV for each of 
the 8 traits evaluated for cow i, μ is the overall mean, 
sirej is the fixed effect of the cow’s sire, statusk is the 
fixed effect of the polled haplotype (coded as 0, 1, or 
2 copies of the minor, or polled, allele), and eijk is the 
random residual error term. Sire effects were absorbed, 
and the polled haplotype effect was tested for differ-
ences using a t-test. Phenotypes were pre-adjusted for 
nongenetic (factors by subtracting management group, 

parity-sex, and herd-by-sire effects from each observa-
tion. The DGV were calculated as the sum of indi-
vidual SNP effects from the December 2018 genomic 
evaluation (Wiggans et al., 2011) plus breed- and trait-
specific intercepts (Cole and Null, 2013). A within-trait 
Bonferroni adjustment was used to correct for multiple 
comparisons, and significance was declared when P < 
0.0028.

Genomic PTA (gPTA) for the lifetime net merit 
selection index (NM$; VanRaden et al., 2018) of bulls 
born since January 1, 2012, that received a marketing 
code from the National Association of Animal Breeders 
(Madison, WI), and cows born on or after January 1, 
2015, were also compared to determine whether there 
was a systematic benefit to polled or horned genetics. 
Bulls were restricted to those marketed because many 
young males are genotyped but never have semen avail-
able for sale, so they do not contribute to genetic trend 
in the next generation. Cows were selected to represent 
a cohort of contemporary animals that have had the 
opportunity to complete their first lactations.

The effects of the polled haplotype on the phenotypic 
and genetic values of the 8 traits are shown in Tables 
2 and 3, respectively. The P-values were adjusted on a 
within-trait basis to account for multiple comparisons. 
Of the 24 phenotype tests conducted, none were sig-
nificant at the 0.0028 level (Bonferroni-adjusted within 
trait) or higher. None of the 24 DGV effects were dif-
ferent from zero. A significant haplotype effect would 
not necessarily indicate a causal relationship, and an 
association of a genotype with trait differences could 
be due to hitchhiking. For example, Peñagaricano and 
Khatib (2012) found evidence that alleles with delete-
rious fertility effects are associated with milk protein 
genes and concluded that the observed effects may be 
due to hitchhiking. These results are consistent with 
the findings of Gehrke et al. (2016), who reported that 
polled Holstein cattle in Germany had lower milk, fat, 
and protein yields than their horned contemporaries. 
Dressel et al. (2016) also found that polled German 
Holsteins had lower breeding values for milk yield and 
total merit index.

Table 1. Number of unique bulls and cows included in each data set by breed and polled haplotype status

Data set   Breed1

Bulls

 

Cows

Polled (PP) Polled (Pp) Horned (pp) Polled (PP) Polled (Pp) Horned (pp)

Phenotypes   BS 1 7 368   1 64 7,552
    HO 57 306 10,671   1,334 14,551 1,119,639
    JE 8 120 2,305   317 8,986 245,909
Direct genomic values   BS 30 893 28,828   5 50 3,990
    HO 1,394 8,908 256,418   908 10,316 780,162
    JE 117 1,515 29,244   312 5,302 137,090
1BS = Brown Swiss, HO = Holstein, and JE = Jersey.
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Horned bulls had the highest average gPTA for NM$ 
in all 3 breeds, but that difference was significant (P < 
0.05) only in HO and JE (HO: 615.4 ± 1.9, JE: 402.3 
± 3.4; Table 4). Homozygous polled (PP) BS cows had 
significantly higher average gPTA for NM$ (P < 0.05) 
than their heterozygous polled (Pp) or horned (pp) 
contemporaries (PP = 261.4 ± 43.5, Pp = 166.1 ± 
13.7, pp = 174.1 ± 1.8; Table 4), but the sample size 
was very small (n = 9). In HO and JE, horned cows had 
higher gPTA for NM$ (P < 0.05; HO = 378.3 ± 0.2, JE 
= 283.3 ± 0.3; Table 4). These differences suggest that, 
in the short term, selection for polled over horned cattle 
will result in lower rates of genetic gain. However, this 
could change rapidly if consumers and milk processors 
demand that management practices change to elimi-
nate the need for disbudding. In such a case, the polled 
haplotype could have enough value to offset losses in 
lifetime profit attributable to increased production.

These results show that there is no association of 
the polled haplotype with yield, longevity, or fertility 
in US BS, HO, or JE cattle. Selection for polled cattle 
in these breeds is unlikely to have a detrimental effect 
on performance unless polled families trace back to a 
narrow genetic base and genetic load accumulates in 

those lines. However, the small pool of available polled 
animals limits the selection pressure that can be ap-
plied to that subpopulation and will result in lower 
rates of genetic gain (e.g., Windig et al., 2015) until 
more polled bulls are available. Advanced reproductive 
or gene editing technologies (e.g., Mueller et al., 2019) 
can be used to increase the frequency of polled animals 
in these breeds without undesirable effects on the traits 
studied.
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Table 2. Effect of the polled haplotype on phenotypes pre-adjusted for nongenetic factors of milk, fat, and protein yields, SCS, single-trait 
productive life (PL), daughter pregnancy rate (DPR), heifer conception rate (HCR), and cow conception rate (CCR)

Breed1   Statistic

Trait

Milk (kg) Fat (kg) Protein (kg) SCS PL (mo) DPR (%) CCR (%) HCR (%)

BS   N 7,617 7,617 7,617 7,358 2,229 4,428 4,428 4,428
  Effect −277.11 −0.86 −4.75 0.31 −2.26 −4.73 11.22 −2.52
  SE 902.33 35.28 24.98 0.56 4.66 6.70 21.57 1.90

HO   N 1,135,524 1,135,524 1,135,524 1,109,327 396,166 615,215 615,215 615,215
    Effect 25.11 −2.99 −1.28 0.06 −0.55 0.82 4.87 −0.01
    SE 29.44 1.05 0.74 0.02 0.44 0.75 1.85 0.24
JE   N 255,212 255,212 255,212 252,672 81,301 196,942 196,942 196,942
    Effect 13.78 1.40 1.74 0.003 0.62 −0.85 −6.25 0.74
    SE 27.82 1.76 1.24 0.031 0.90 1.42 3.87 0.65
1BS = Brown Swiss, HO = Holstein, and JE = Jersey.

Table 3. Effect of the polled haplotype on direct genomic values of milk, fat, and protein yields, SCS, single-trait productive life (PL), daughter 
pregnancy rate (DPR), heifer conception rate (HCR), and cow conception rate (CCR)

Breed1   Statistic

Trait

Milk (kg) Fat (kg) Protein (kg) SCS PL (mo) DPR (%) CCR (%) HCR (%)

BS   N 4,045 4,045 4,045 4,045 4,045 4,045 4,045 4,045
    Effect 110.55 4.45 3.44 −0.06 0.05 −0.47 −0.18 0.12
    SE 45.44 1.72 1.26 0.03 0.42 0.33 0.33 0.30
HO   N 791,386 791,386 791,386 791,386 791,386 791,386 791,386 791,386
    Effect 3.82 −0.03 0.10 −0.004 0.05 0.05 0.06 0.07
    SE 3.84 0.14 0.09 0.002 0.03 0.03 0.03 0.02
JE   N 142,704 142,704 142,704 142,704 142,704 142,704 142,704 142,704
    Effect 4.04 −0.35 0.02 −0.001 −0.05 202.08 0.06 −0.08
    SE 5.13 0.20 0.14 0.003 0.04 0.04 0.04 0.03
1BS = Brown Swiss, HO = Holstein, and JE = Jersey.
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