Four-State Dairy Nutrition and Management Conference

Wednesday, June 10, 2020 Virtual Conference

Cooperative Extension for: Iowa State University University of Illinois University of Minnesota University of Wisconsin

Table of Contents

Pre-Conference Symposium Sponsored by Adisseo All Systems Go! Amino Acid Balancing to Take Cows Farther

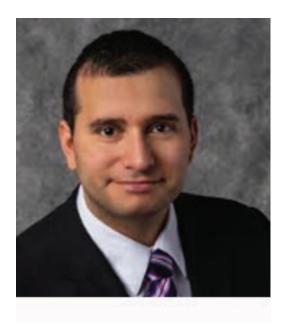
Amino Acid Balancing for the Transition Cow: Old and New Stories from a Molecular Perspective Dr. Johan Osorio, South Dakota State University	1
Yes, Met and Lys are Important, But There are Several Others That are Also Important in Lactating Cow Diets Dr. Mark Hanigan, Virginia Tech	8
Functional Amino Acids: The Concept, Present Reality, and Future Prospects using Reproduction as an Example Dr. Milo Wiltbank, University of Wisconsin	13

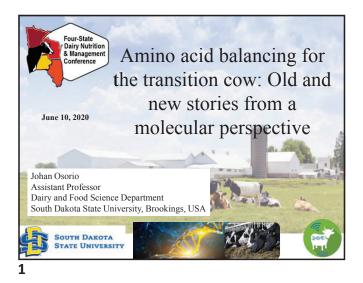
4-State Dairy Nutrition and Management Conference

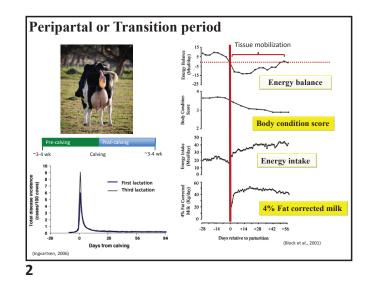
General Session Improving Herd Health

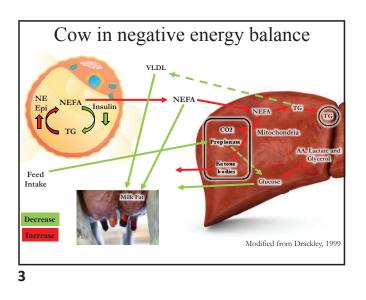
 Taking Steps to Prevent Lameness in Dairy Herds Dr. Nigel Cook, University of Wisconsin How Daily and Seasonal Rhythms Impact Cows Dr. Kevin Harvatine, Penn State University. 	
Nutritional Regulation of Gut Health and Development: Colostrum and Milk Dr. Mike Steele, University of Guelp	49
Maximizing Profit from your Bull Calves	
Realizing Full Value for Full- and Half-blood Holstein Steers Dr. Dan Schaefer, University of Wisconsin	59
The Commercial Science Behind Purebred Holstein Beef Bill Munns, JBS USA	68
A Data Driven Approach to Sourcing Profit Focused Beef Bulls for a Holstein Based Dairy Chip Kemp, American Simmental Assn.	72
Breakout Sessions	
Clean Feed: Optimizing Health and Nutrition Dr. Keith Bryan, Chr Hansen	81
Lessons Learned From the 2019 Growing Season Dr. Mike Hutjens, University of Illinois Dr. Steve Woodford, Nutrition Professionals	90
Don't Underestimate the Cost of Milk Quality Dr. Derek Nolan, University of Ilinois	96
Effect of Timing of Induction of Ovulation Relative to Timed AI Using Sexed Semen on Pregnancy Outcomes in Primiparous Holstein Cows Dr. Paul Fricke, University of Wisconsin	103

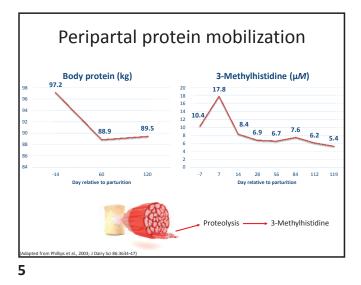
Challenges of Barn Design and Performance in Automated Milking Systems Dr. Nigel Cook University of Wisconsin)
Maximizing Milk Fat Yield Dr. Kevin Harvatine, Penn State University123	3
Nutritional Regulation of Gut Health and Development: Weaning and Beyond Dr. Mike Steele, University of Guelph131	1
The High Fertility Cycle Dr. Milo Wiltbank, University of Wisconsin	C
Using MUN to Manage Protein Feeding Dr. Mark Hanigan, Virginia Tech	Э
Rumen-Protected Amino Acids Fed to Dairy Cows During Stressful Periods: Does it work? Dr. Phil Cardoso, University of Illinois	4

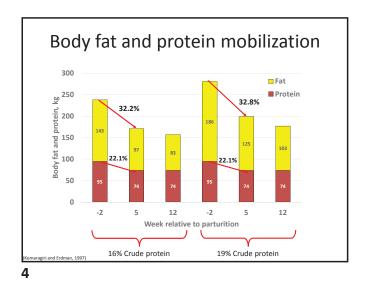

Advertisers Index

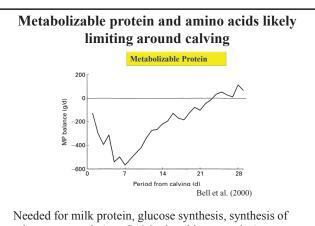

Advertiser	Page No.
Adisseo	7
Ag Processing, Inc	
Alforex Seeds	
Alltech	
Amelicor	
Anpario	
Arm & Hammer	
Balchem	
Canola Council of Canada	
Central Life Sciences	
Dairy Nutrition Plus	152
Dairyland Labs	
Diamond V	
Elanco	70
Feed Components	139
Fermented Nutrition	38
GLC Minerals	47
International Stock Food	48
Jefo	71
Kemin Animal Nutrition & Health	80
Kent	139
Lallemand Animal Nutrition	67
Micronutrients	67
Multimin USA	
Natural Biologics	
Novita Nutrition	95
Olmix	
Origination LLC	
Papillon Agricultural Co.	
Peak Forage Solutions Inc	
Phileo by Lesaffre	
PMI	
Provita Supplements	
Quali Tech Inc.	
Quality Liquid Feeds	
Quality Roasting	
Rock River Laboratory	
Timab USA	
Virtus Nutrition	
Zinpro Performance Minerals	165

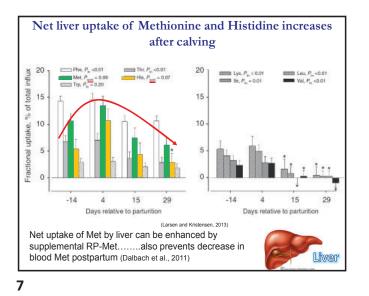


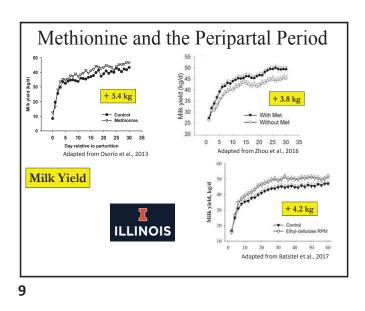

Amino Acid Balancing for the Transition Cow: Old and New Stories from a Molecular Perspective

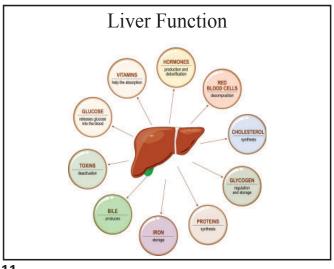

Johan Osorio, Assistant Professor Dairy and Food Science Department South Dakota State University, Brookings, USA

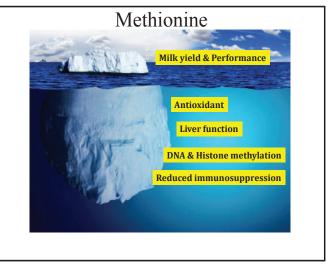


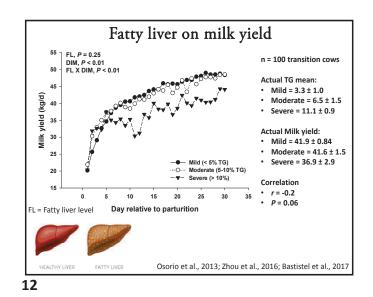


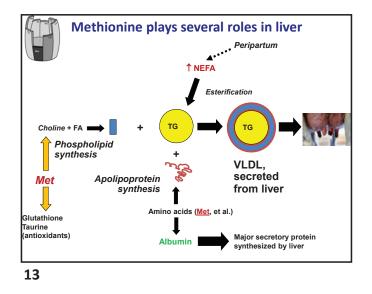


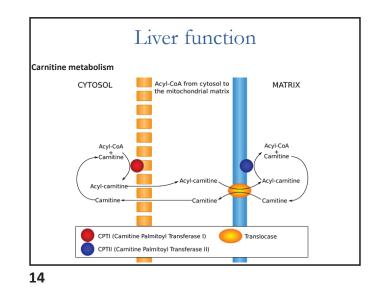


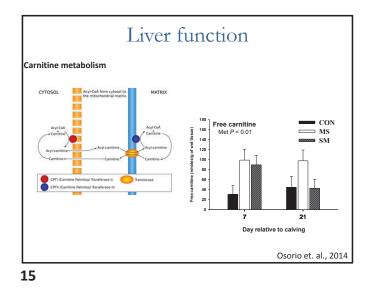

other compounds (e.g. SAM, glutathione, taurine)

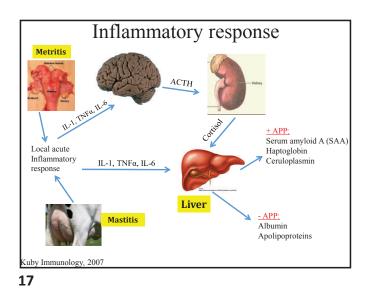


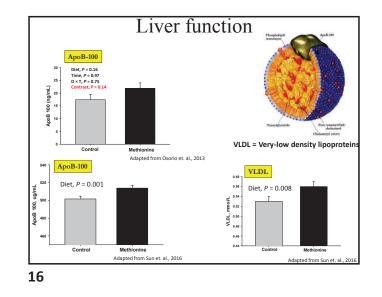

Methionine and the Peripartal Period

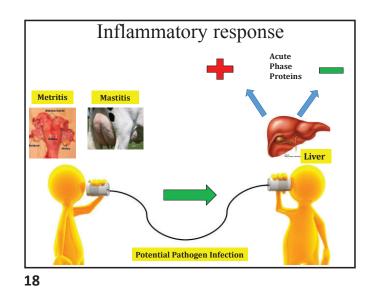

Dietary	Osorio et	t al., 2013	Zhou et a	al., 2016	Batistel et a	I., 2017
component	Control	Met	Control	Met	Control	Met
CP, % of DM	17.4	17.4	17.2	17.3	17.7	17.7
MP supplied (g/d)	1,563	1,840	2,090	2,374	2,425	2,640
MP balance (g/d)	-574	-616	-434	-573	-118	-160
Lys (% of MP)	6.17	6.07	6.33	6.24	6.40	6.38
Met (% of MP)	1.81	2.15	1.79	2.30	1.70	2.24
Lys:Met	3.43:1	2.82:1	3.54:1	2.71:1	3.78:1	2.88:1
					ILI	

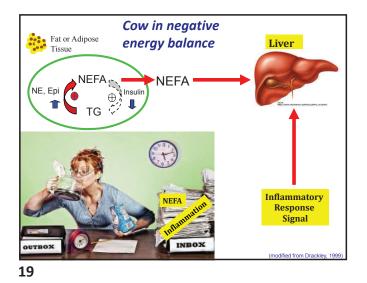


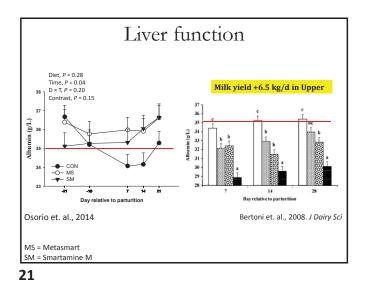


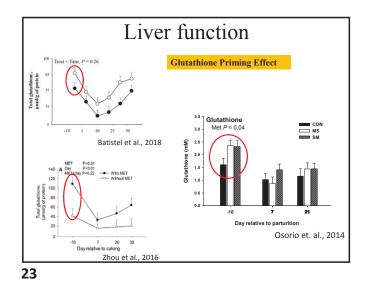


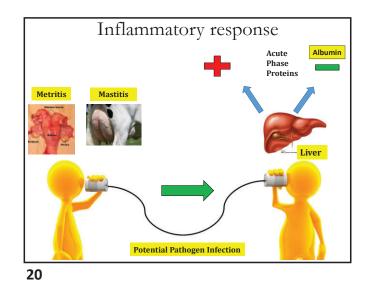


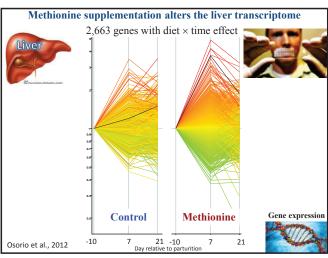


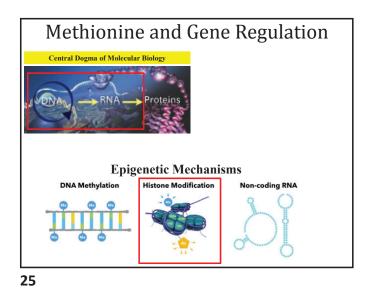


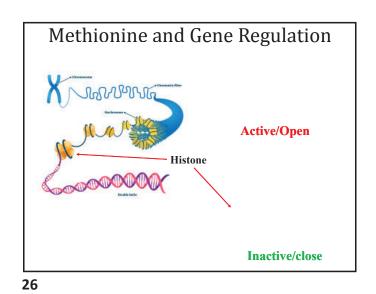




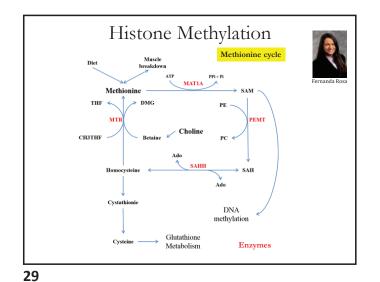


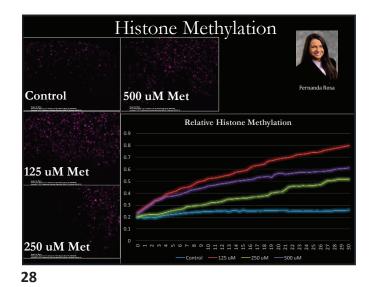


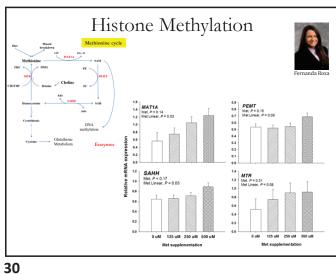


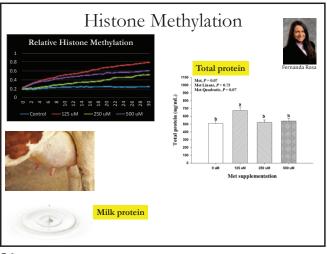


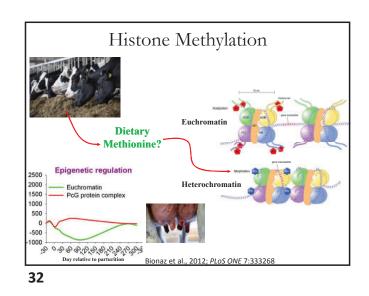
Dietary methyl-donors in dairy cows rRNA complex otein synthesis initiation Die Milk DNA methylation Epigenetics SAN PF Dimethylglycine Vit. B12 S-MTH 🕀 🕒 Liver Fun /LDL Ð Taurine Cystein Antioxidants Glutathione Cooke et al. 2007 Zom et al. 2011 22

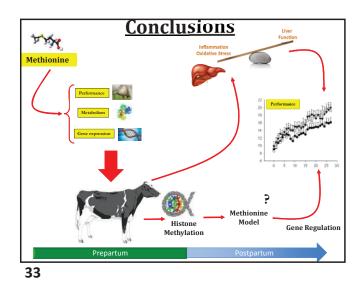












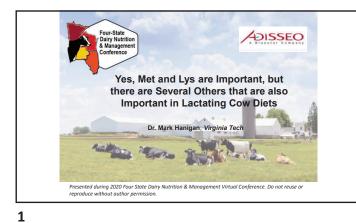
METHIONINE More Than Milk

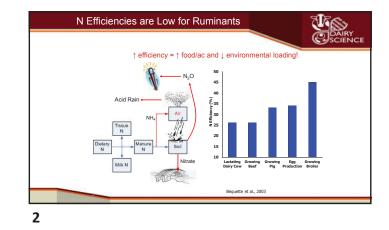
Optimal performance, day in and day out, requires that all essential nutrient requirements be met.

More milk, milk protein, and milkfat More relief from metabolic disorders at transition

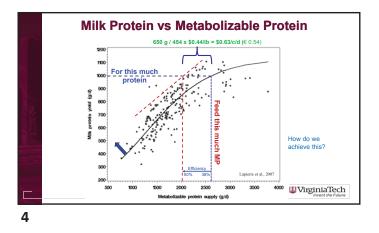
More timely breed backs and full-term pregnancies

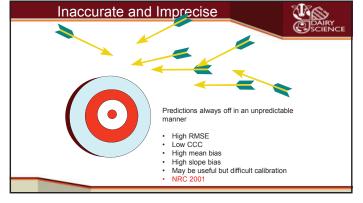
Talk with your Adisseo representative today!

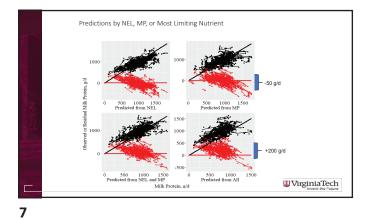

www.adisseo.com

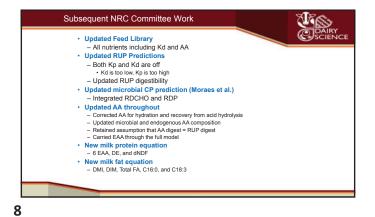


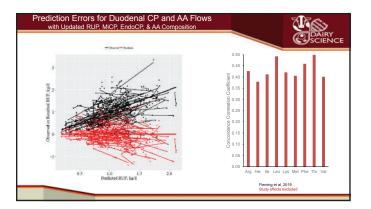
Yes, Met and Lys are Important, but there are Several Others that are also Important in Lactating Cow Diets

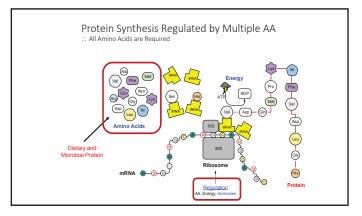

Dr. Mark Hanigan Virginia Tech

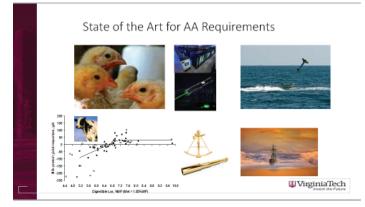


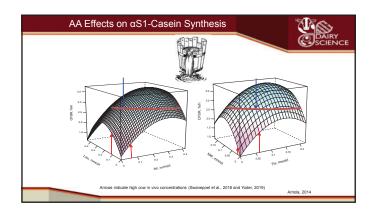

Ohio Dairy Nutrient Values – 5-year Average Nutrient values derived using Sesame Buckeye Dairy News: Vol 22, Issue 2 (March, 2020) Nutrient Cost/Unit Daily Supply* Cost/cow NEL (3X, NRC 2001) MCal \$0.08 35.4 Mcal \$2.83 Metabolizable Protein (NRC) Lbs \$0.43 5.44 lbs \$2.34 Effective NDF (forage NDF) Lbs \$0.14 10.4 lbs \$1.46 Non-effective NDF (Total NDF – Forage NDF) Lbs -\$0.02 7.3 lbs -\$0.15 Total Cost for Energy, Protein and Fiber \$6.48 * 1600 lb cow, 80 lbs milk/d, 3.0% protein, 3.5% fat https://dairy.osu.edu/newsletter/buckey Sesame can be licensed and used for l 3



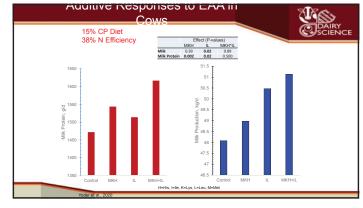

Ration Balancer: Behind the User Interface

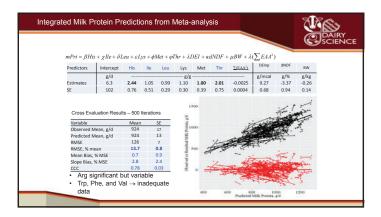


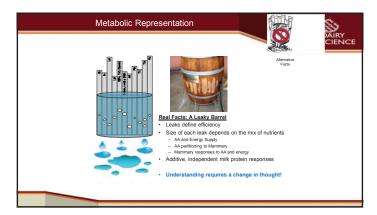

6

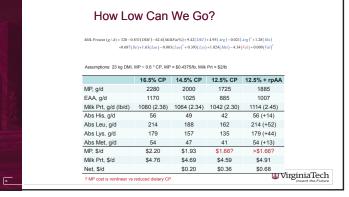


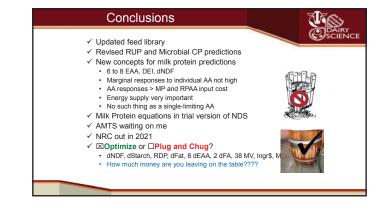












How Low Can We Go?				
	16.5% CP	14.5% CP		
MP, g/d	2280	2000		
EAA, g/d	1170	1025		
Milk Prt, g/d (lb/d)	1080 (2.38)	1064 (2.34)		
Abs His, g/d	56	49		
Abs Leu, g/d	214	188		
Abs Lys, g/d	179	157		
Abs Met, g/d	54	47		
MP, \$/d	\$2.20	\$1.93		
Milk Prt, \$/d	\$4.76	\$4.69		
		\$0.20		

Diet Optimization Using Different Strategies RP His, Lys, Ile, Leu, Met, and Thr offered

	Least Cost	Maximum IOFC ^a	IOFC + N Penalty⁵	IOFC ↓ Milk\$ ^e	IOFC ↓↓ Milk\$ ^d
Diet Cost, \$/d/c	\$6.38	\$7.72	\$7.81	\$7.46	\$6.80
Milk Value, \$/d/c	\$14.59	\$16.74	\$16.18	\$12.31	\$7.75
Milk Protein, g/d	1110	1286	1210	1262	1189
ME, mcal/kg	2.92	3.01	3.12	3.00	2.98
MP, g/d	2039	3067	2110	2907	2364
Dietary CP, %	14.9	21.8	14.7	20.6	17.1
N Efficiency, %	29.7	23.6	33.0	24.5	27.8
Neutral Detergent Fiber, %	35.7	32.8	34.5	33.4	35.3
Starch, %	26.2	24.1	25.2	24.8	25.9
Fatty protein = \$4 / Ib and milk fat = \$2	2 / Ib; assume 2.53	d high potential pr	oduction.83	2.96	2.77
 ^c Milk protein = \$3 / Ib and milk fat = \$1. ^d Milk protein = \$2 / Ib and milk fat = \$1. 	.50 / Ib			l.	Virginia

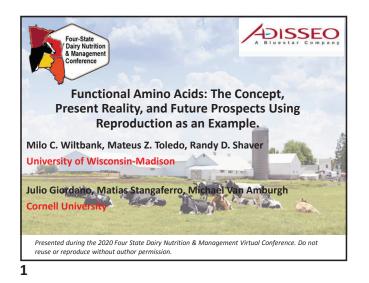
DAIRYLAND[™] Laboratories, Inc.

www.dairylandlabs.com

FULL-SERVICE TESTING

Accurate and timely analysis of feed and forages, molds and mycotoxins, soil, water, and more.

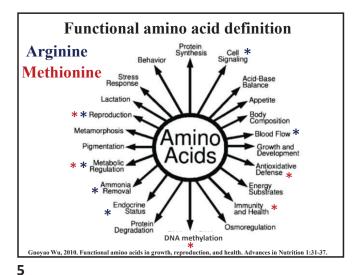
CONTACT US TODAY For tools that can add value to your forage testing data info@dairylandlabs.com Phone: 608-323-2123 Fax: 608-323-2184



Functional Amino Acids: The Concept, Present Reality, and Future Prospects Using Reproduction as an Example

Milo C. Wiltbank, Mateus Z. Toledo, Randy D. Shaver University of Wisconsin-Madison

Julio Giordano, Matias Stangaferro, Michael Van Amburgh Cornell University



AA Nutrition > Over 700 AA occur in nature, but 20 are incorporated into proteins. Amino acids are required nutrients. Essential vs. Non Essential. • Ala • Arg Amino Acid Structure • His • Asp Hydrogen • Ile • Asn Amino Carboxyl • Cys • Leu • Glu · Lys • Met • Gln • Phe • Gly R • Thr • Pro • Trp R-group • Ser Val • Tyr Wu, 2010 2

Functions of amino acids

- Protein Synthesis
- Source of energy
- "Functional" actions such as:
 - Cell signaling (neurotransmitters such as glutamate)
 - Regulation of blood flow (NO is made from arginine)
 - Regulatory molecules (methionine)

3

Functional amino acid definition

"There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA."

Guoyao Wu, 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1-17.

"A growing body of literature leads to a new concept of functional AA, which are defined as those AA that regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms. Both NEAA and EAA should be considered in the classic "ideal protein" concept or formulation of balanced diets to maximize protein accretion and optimize health in animals and humans."

Guoyao Wu, 2010. Functional amino acids in growth, reproduction, and health. Advances in Nutrition 1:31-37.

۵

The effect of various AA on reproduction (up to 2017) Number Year of first **Major functions** AA Species of studies publication Pig, sheep, horse, Synthesis of nitric oxide and Arg 33 cattle, rats and 1996 polyamines; increased litter size mouse Increased embryonic development in Cattle, pig, mouse Gly 7 1990 vitro; some ovarian, uterine effects hamster Pig, sheep, cattle, Gln Metabolic fuel 5 1990 and mice mTOR 2 2012 Leu Rats and mice Pro Precursor for polyamines 2 Pig and sheep 2005 Tau Oxidative balance 2 Cattle and Cat 1998 Hemoglobin structure; histamine His 1991 Lys Prevent weight loss 7 Pig and cattle Methylation of DNA, synthesis Met 8 Cattle and rats 1989 of choline, antioxidant 6

Reproductive effects of Arg feeding in pigs						
Study	Period	% Arg	Litter Size	Birth Weight		
Mateo et al 2007	Days 30-114	0.83%	Increase 2.0	Increase 24%		
Cambell 2009	Days 14-28	1%	Increase 1.0	Increase 6.4%		
De Blasio et al. 2009	Days 17-33	1%	Increase 1.2	Not Determined		
Berrard & Bee 2010	Days 14-28	0.87%	Increase 3.7	Increase 32%		
Li et al., 2011	Days 14-25	0.4%	Increase 2.2	No Effect		
Li et al., 2011	Day 0-25	0.8%	Decrease 3.1	Decrease 34%		
Gao et al., 2012	Days 22-114	0.8%	Increase 1.1	Increase 11%		
Nuntapaitoon et al. 2018	Days 20-80	0.8%	Increased 2.1	Increased 23%		
14 Total Studies			10+; 2-; 2NE	9+; 2-; 2NE		

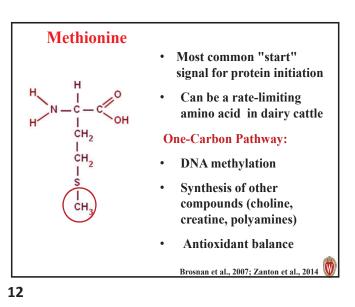
Functional amino acids: The concept, present reality, and future prospects using reproduction as an example: Arginine

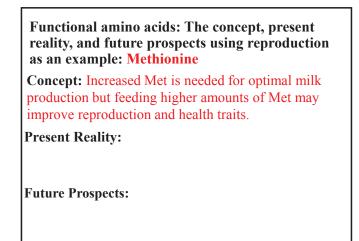
Concept: When higher amounts of Arg are fed, effects on reproduction and immune function will be observed.

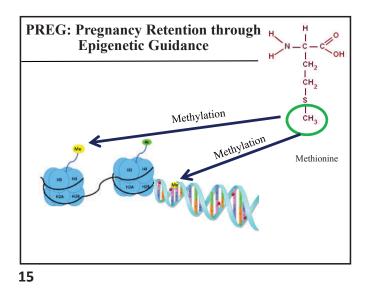
Present Reality: Feeding Arg increases uterine blood flow and improves reproduction in litter-bearing species. No studies have been done on reproduction in dairy cattle. Large, controlled studies are needed. **Future Prospects:** An effective rumen-protected Arg is needed. Perhaps feeding N-carbomylglutamate will work. Effects on pregnancy loss and stillbirth seem possibly economically-important endpoints.

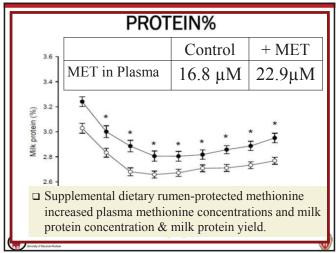
9

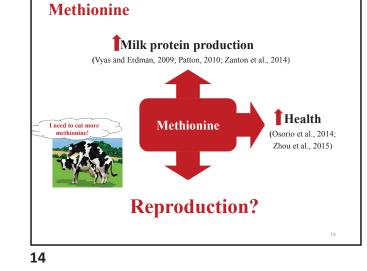
Percentage of stillbirth					
Reference	Country	# Herds	# Calves	% Stillbirth	
Overton and Dhuyvetter, 2020	USA	50	120,500	5.7	
Mahnani et al., 2017	Iran	10	53,265	4.2	
Vieira Neto et al., 2017	USA	2	8,095	9.8	
Kayano et al., 2016	Japan	5,172	1,281,737	7.7	
Lombard et al., 2007	USA	3	7,788	8.2	
Meyer et al., 2001	USA	≈ 2,821	666,341	7.0	
Total	-	8,058	2,137,726	7.3	

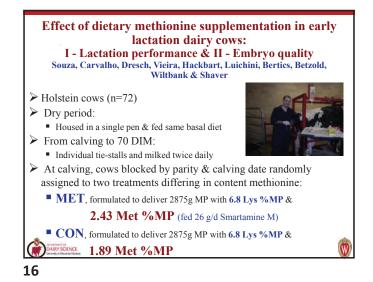

Reproductive effects of Arg feeding in ruminants?

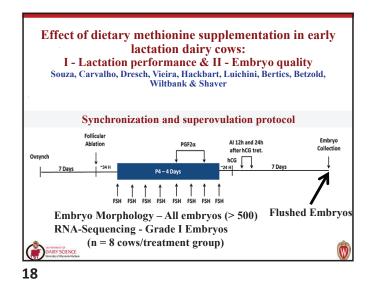

Study	Period	Arg Treatment	Lambs born	Birth/weaning Weight
Lassala et al. 2011 – Sheep with multiple fetuses	100-121	i.v. infusion 3X/d 345 ug	Decrease 23% born dead	Birth: Increase 23%
Crane et al. 2016	0-14	i.v. once daily of 30 mg/kg BW	No effect	Weaning: 6.1 % increase in litter weight
Luther et al. 2009	0-15	i.v. once daily 27 mg/kg of BW	46 % more lambs	Birth: No effect

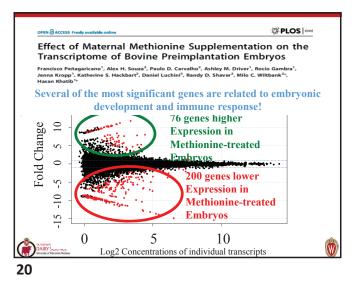

8

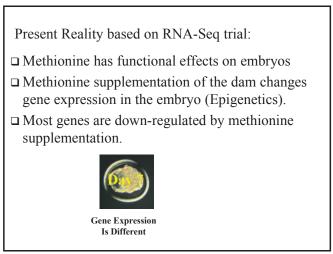

Potential Arg effects on reproduction in dairy cows
Pregnancy loss in single and twin pregnancies in cool vs.
warm temperatures in lactating dairy cows

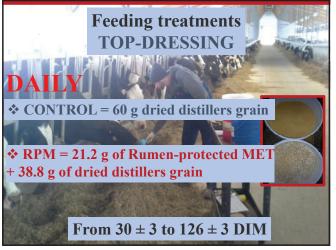

Singletons	Preg Loss	n	<i>P</i> -value
Cool	4.6%	37/805	
Warm	12.7%	64/505	
Total	7.7%	1,310	< 0.0001
Twins	Preg Loss	n	<i>P</i> -value
Cool	17.6%	16/91	
Warm	53.7%	22/41	
Total	28.8	132	< 0.0001
	L	opez-Gatius et	al., 2004



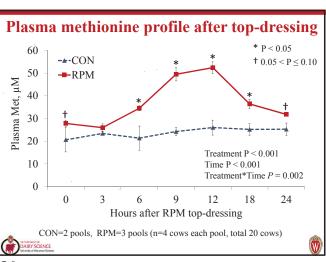






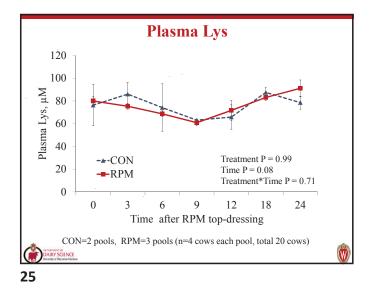


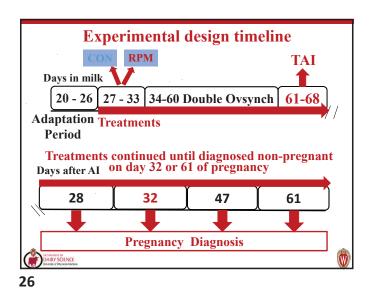
nted cows	fed MET o	r CON
MET	CON	
35	37	<i>P</i> -value
17.0 ± 1.3	17.7 ± 1.5	0.90
74.7 ± 5.6	82.2 ± 3.8	0.27
56.3 ± 6.5	62.5 ± 6.0	0.49
18.5 ± 4.6	19.7 ± 4.7	0.83
		W
	MET 35 17.0 ± 1.3 74.7 ± 5.6 56.3 ± 6.5	



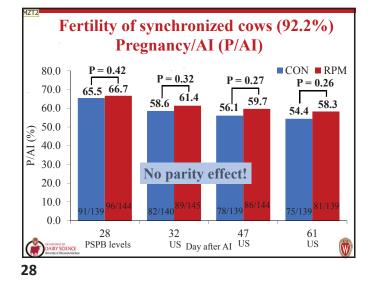
 RESEARCH ARTICLE

 Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows


 Mateus 2, Toledo¹, Giovanni M. Baez^{1,10}, Alvaro Garcia-Guerra^{1,20}, Nelson E, Lobos¹, Jerry N, Guenther¹, Eduardo Trevisol¹, Daniel Luchini², Randy D, Shaver¹, Milo C, Witbank¹².

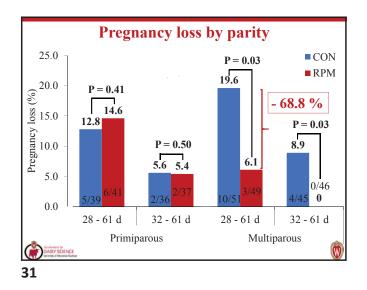

 Appartment of Dairy Science, University of Wisconsin-Madison, Misconsin-Madison, Misconsin-Madiso

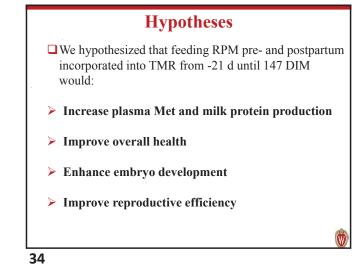
PLOS ONE

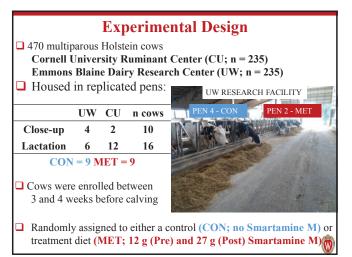


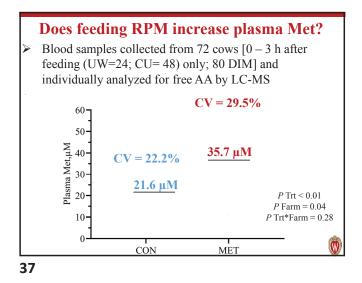
Do	ouble-O	vsynch	1			
Sun	Mon	Tue	Wed	Thu	Fri	Sat
					GnRH	
					PGF	
	GnRH					
	GnRH					
	PGF	PGF	GnRH	TAI		

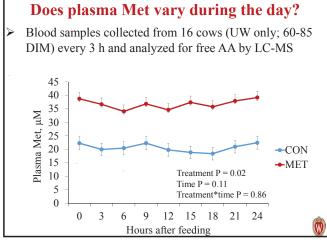
Embryo size


- Measurements Software, Image J (National Institutes of Health, Bethesda, MD)
- Recorded for 15 seconds and the ideal position and orientation of the conceptus was selected
- 2 independent people analyzed the videos


Mateus Z. Methionine				
Trt & Parity	n	Amnionic Vesicle (mm ³)	Crown-Rump Length (mm)	Abdominal Diam. (mm)
Pri-Con	36	617.1	10.5	5.6
Pri-RPM	38	596.0	10.9	5.7
P-Value		0.67	0.21	0.53
Mul-Con	37	479.4	10.6	5.3
Mul-RPM	45	593.9	11.0	5.9
P-Value		0.04	0.22	0.01
Multiparous had larger e		vs supplemented	l with RP-Meth	ionine




Feeding Rumen-Protected Methionine Pre- and Postpartum in Dairy Cows: Impact on Health, Productive and Reproductive Performance MZ.Toledo*, M.Stangaferro*, R.S.Gennari, P. L. J. Monteiro Jr., R.V. Barletta, C. A. Gamarra, A.B. Prata, J. Dorea, D. Luchini, M.M. Perez, M. Masello, R. Wijma, M.E. Van Amburgh, R.D. Shaver , J.O. Giordano, and M.C. Wiltbank THE UNIVERSITY MADISON


> Studies feeding Met during pre- and postpartum and evaluating health

Production?, Health?, Reproduction?, HealthXReproduction?

Milk yield daily

milk composition biweekly

Does feeding RPM pre- and postpartum improve:

38

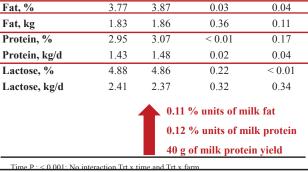
	CON	MET	Trt	Farm
DMI, Kg/d	28.0	27.9	0.96	< 0.01
Milk yield, Kg/d	49.2	48.7	0.36	0.61

Producu	ve per	<u>torman</u>	ce: 16 w	eeks
	CON	MET	Trt	Farm
DMI, Kg/d	28.0	27.9	0.96	< 0.01
Milk yield, Kg/d	49.2	48.7	0.36	0.61
Fat, %	3.77	3.87	0.03	0.04
Fat, kg	1.83	1.86	0.36	0.11
Protein, %	2.95	3.07	< 0.01	0.17
Protein, kg/d	1.43	1.48	0.02	0.04
Lactose, %	4.88	4.86	0.22	< 0.01
Lactose, kg/d	2.41	2.37	0.32	0.34
SCC x 10 ³ , cells/ml	76.3	68.5	0.45	< 0.01
MUN, mg/dl	10.3	10.5	0.44	< 0.01
Milk:DMI	1.79	1.79	0.96	< 0.01
Efficiency of N use	0.306	0.320	0.04	< 0.01

 Con
 MET
 Trt
 Farm

 DMI, Kg/d
 28.0
 27.9
 0.96
 < 0.01</td>

 Milk yield, Kg/d
 49.2
 48.7
 0.36
 0.61


 Fat, %
 3.77
 3.87
 0.03
 0.04

112 147 Treatments

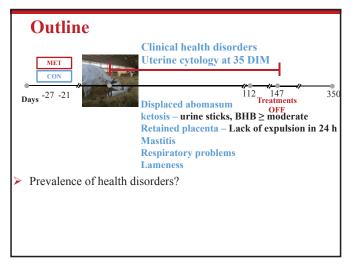
OFF

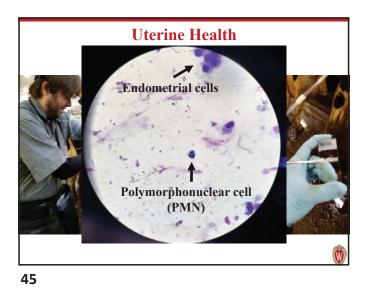
350

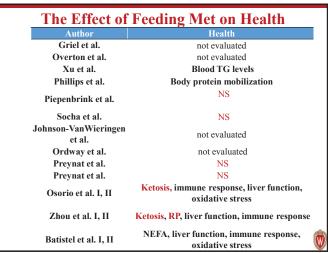
Ŵ

Outline Background

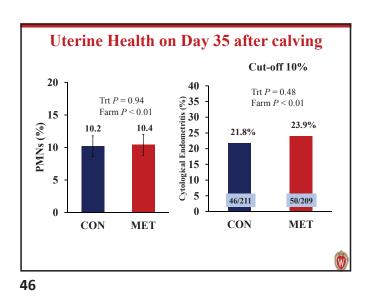
MET

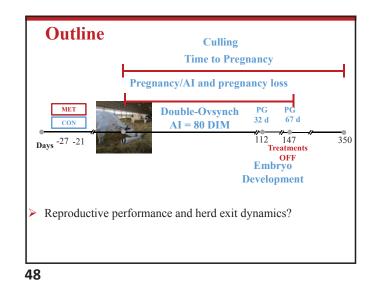

Days -28 -21

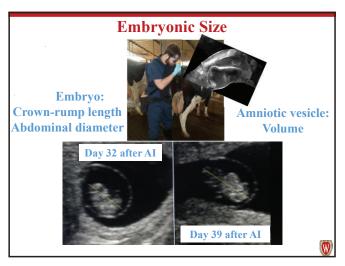

39

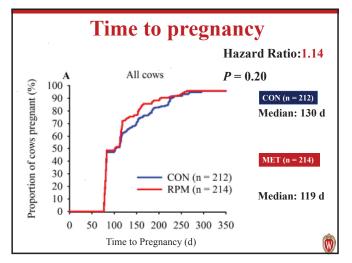

Amino acids (AA) nutrition in dairy cattle

> Met importance and functions

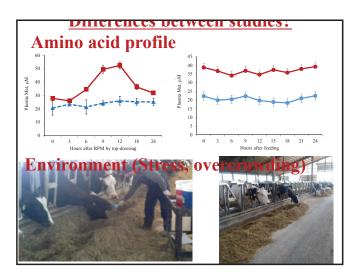

and productive performance?

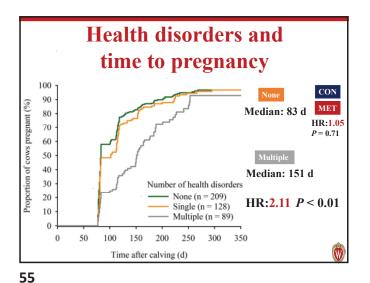





	CON	RPM		P-v	alue
Number of health disorders	Proporti	on, % (n)	SEM	Trt	Farm
None	49.4 (117)	48.7 (114)	2.8	0.86	0.63
Single	28.3 (67)	30.4 (71)	3.0	0.61	0.69
Multiple	22.3 (53)	20.6 (48)	2.7	0.65	0.93
Type of health disorder					
Displaced abomasum	2.9 (8)	3.3 (8)	1.1	0.81	0.12
Ketosis	13.9 (33)	9.9 (23)	2.1	0.18	0.58
Mastitis	20.9 (49)	17.4 (41)	3.0	0.40	0.40
Retained placenta	7.8 (19)	9.7 (23)	2.0	0.48	0.11
Respiratory problems	11.3 (27)	11.5 (28)	2.3	0.95	0.16
Lameness	5.0 (15)	3.9 (12)	1.7	0.62	0.01

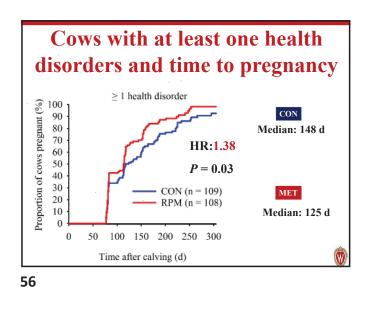
Pregnancies	per AI and	pregnan	ey loss
Synch	ronized co	ws (84%)	
P/AI	CON	MET	P-value
Day 25 (based on PSPB)	63.9% (115/180)	64.4% (112/174)	0.45
Day 29 (based on PSPB)	60.6% (109/180)	62.6% (109/174)	0.34
Day 32 (based on TUS)	53.9% (97/180)	55.2% (96/174)	0.41
Day 67 (based on TUS)	48.0% (86/179)	51.2% (89/174)	0.29
			Ŵ





Pregnancy loss	CON	MET	P-value
Day 25 - 29	5.2% (6/115)	2.7% (3/112)	0.17
Day 29 - 32	11.0% (12/109)	11.9% (13/109)	0.43
Day 25 - 67	24.6% (28/114)	20.5% (23/112)	0.24
Day 32 - 67	10.4% (10/96)	7.3%	0.23

			ET)79.5	<i>P</i> Trt 0.16
9.8 52	27.8 3,2	82.3 3.0)79.5	0.16
)-		
.8 1	0.7 1	8.2 1	7.9	0.42
7 5	5.6 9	0.5	9.4	0.23
	7 5	7 5.6 9	7 5.6 9.5	


	No	ne	Sir	igle	Mul	tiple		Trt P-val	ue
Item	CON	RPM	CON	RPM	CON	RPM	None	Single	Multiple
n	103	106	62	66	47	42			
Milk yield, kg/d	50.3	49.4	50.1	49.7	48.6	48.9	0.20	0.62	0.73
ECM, kg/d	50.5	50.8	50.1	50.8	48.1	49.4	0.73	0.47	0.20
NE _L in milk, Mcal/d	35.9	36.1	35.5	36.0	33.9	35.0	0.73	0.46	0.17
Milk components yield, kg/d						8) g of mi	lk protein	
Fat	1.86	1.88	1.85	1.88	1.76	1.82	0.53	0.44	0.28
Protein	1.46	1.49	1.43	1.48	1.36	1.44	0.12	0.07	0.01
Lactose	2.48	2.41	2.45	2.41	2.36	2.38	0.12	0.50	0.69
Milk composition									
Fat, %	3.74	3.86	3.72	3.82	3.68	3.75	0.10	0.21	0.51
Protein, %	2.93	3.06	2.89	3.01	2.84	2.96	< 0.01	< 0.01	< 0.01
Lactose, %	4.92	4.89	4.87	4.86	4.84	4.85	0.13	0.45	0.87
MUN, mg/dl	10.4	10.8	10.2	10.4	10.1	10.1	0.18	0.67	0.99
SCC x 103, cells/ml	77.5	65.8	96.5	105.6	182.6	132.4	0.34	0.64	0.18

Feeding RPM seems to improve functional properties of cows that suffer diseases (production, reproduction, herd exit).

57

	CON	Iring lacta		×	alue
Item	Proport	ion, % (n)	SEM	Trt	Farm
Sold	20.6 (49)	13.4 (32)	2.6	0.06	0.14
Died	6.6 (5)	7.1 (10)	1.5	0.85	< 0.01
Left (Sold + Died)	22.8 (54)	17.8 (42)	2.3	0.13	0.91
00 90 CON (2) 80 100 90 90 90 90 90 90 90 90 90 90 90 90 9]	CON (n = 237) RPM (n = 233)	67	/% (54	/81)
CON Mean: 310 d MET Mean: 215 d				one or h disor	
Mean: 315 d # 20	1		HR:1	.53 P	= 0.06

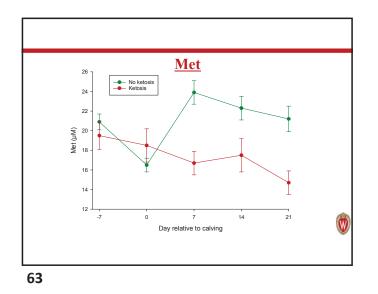
58

Functional amino acids: The concept, present reality, and future prospects using reproduction as an example: Methionine

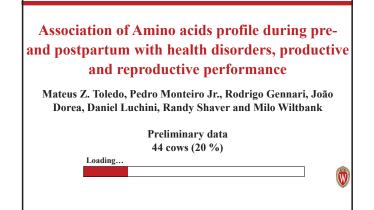
Concept: Increased Met is needed for optimal milk production but feeding higher amounts of Met may improve reproduction and health traits.

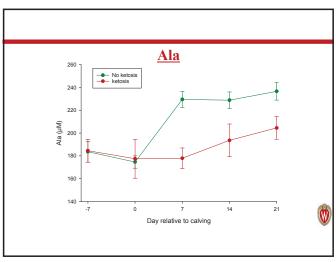
Present Reality: There are physiologic effects of Met: Change in gene expression in embryo when dam is fed Met. Reduced pregnancy loss in multiparous with Met feeding. Improved reproductive efficiency with Met for unhealthy cows.

Large, randomized, controlled studies are needed to determine effects of functional amino acids on economically important traits of dairy cattle.

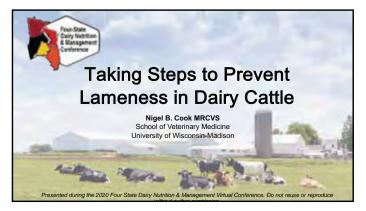

Future Prospects: Amounts and timing of RPM feeding still needs to be optimized.

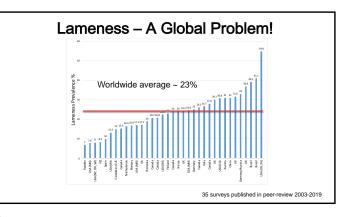
Rumen-protected methionine – Need more data on reproductive efficiency and health effects under field conditions (stress, overcrowding, diseases).


Changing amino acids in uterine histotroph and during pregnancy may improve reproduction.


Effect of decreased or maintained amino acid concentrations during the transition period on health and reproduction.

61

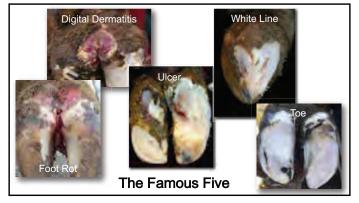


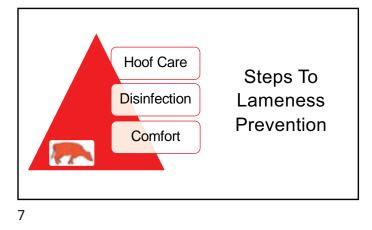


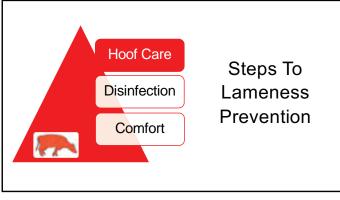
Taking Steps to Prevent Lameness in Dairy Cattle

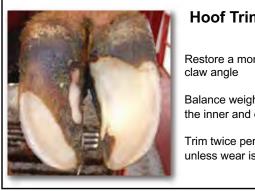
Nigel B. Cook MRCVS School of Veterinary Medicine University of Wisconsin-Madison

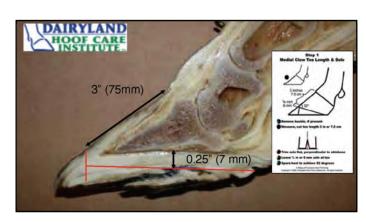
3


2


Factors Reducing Lameness Risk


- Less time standing on concrete (Bell et al., 2009)
 Deep bedded comfortable stalls rather than mats or mattresses (Chapinal et al., 2013; Cook, 2003; Deep becaded commonable status rather than mats or mattresses (Chapinal et al., 2013; Cook, 200 Dippel et al., 2009; Espejo et al., 2006; Rouha-Mulleder, et al., 2009; Solano et al., 2015),
 Less restrictive neck rail locations, low rear curb heights, and absence of lunge obstructions (eg. Chapinal et al., 2013; Dippel et al., 2009; Rouha-Mulleder, et al., 2009; Westin et al., 2016),
 Wider stalls (Westin et al., 2016)
 Less restructive representer extreme other than extremelia ensure (Particus et al., 2006)
- Use of manure removal systems other than automatic scrapers (Barker at al., 2010).
- Use of non-slippery, non-traumatic flooring rather than slats (Barker et al., 2010; Sarjokari et al., 2013; Solano et al., 2015a),
- Access to pasture or an outside exercise lot (Chapinal et al., 2013; Hernandez-Mendo et al., 2007; Popescu et al., 2013; Rouha-Mulleder, et al., 2009)
- Use of a divided feed barrier (rather than a post and rail system) (Sarjokari et al., 2013),
 Wider feed alleys (Sarjokari et al., 2013; Westin et al., 2016)
- · Access to a trim-chute for treatment and use of an effective footbath program (eg. Pérez-Cabal and Alenda. 2014)
- Prompt recognition and treatment of lameness (Barker at al., 2010)





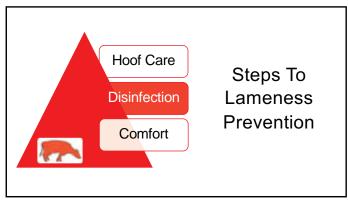
Hoof Trimming

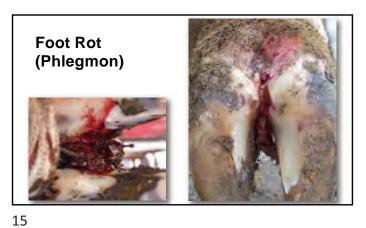
Restore a more upright

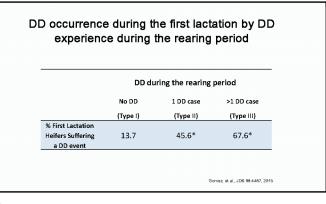
Balance weight between the inner and outer claw

Trim twice per lactation unless wear is an issue

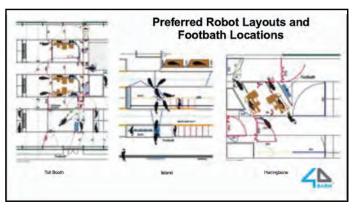
10





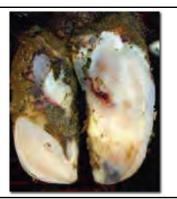


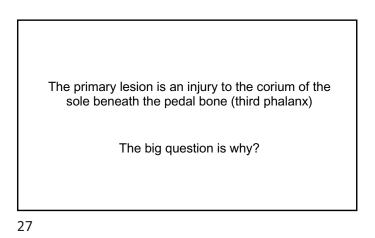
Digital Dermatitis Dynamics

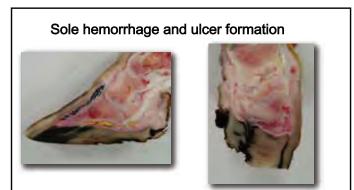


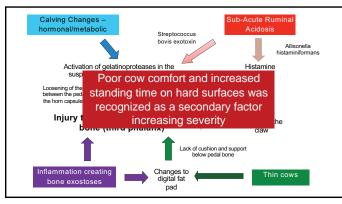
[Co Longer footbaths (Logue et al., Vet. (effica	cy?
• 3 herd baths	s with 7'(2.2m) long baths a	nd 3 herds wit	h 14'(4.4	4m) long
	l 5% CuSO4 and a test produ for 15 wks	uct in split bath	n design E	BID for 3d pe
	Reduction in DD lesion Score Effect	OR (95% CI)	P-Value	
	Reduction in DD lesion Score Effect 5% copper sulfate v test product	OR (95% CI) 1.6 (1.14-2.32)	P-Value	
		. ,]

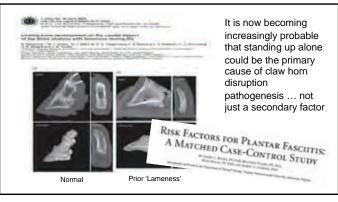
	Footbath Best Management Practice
:	Use a well-designed footbath with adjacent mixing facility Footbath 4 milkings per week and adapt based on outcome to achieve a
	minimum frequency to maintain control
•	Use an antibacterial with evidence of efficacy against DD and footrot No higher than 5% CuSO4 and monitor soil copper levels No higher than 4% formalin and avoid in cold weather Use of acidifier to pH no lower than 3.0
•	Use the bath as long as it is effective \sim 150-300+ cow passes
•	Don't forget to include all life stages of the cow!

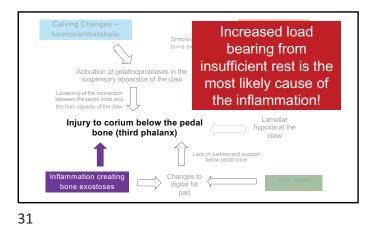


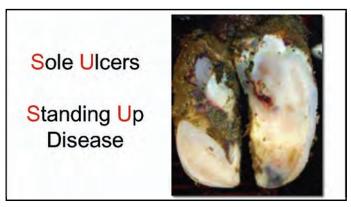


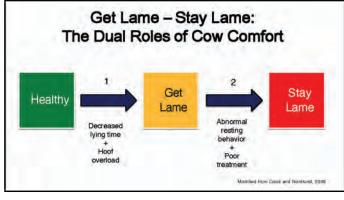


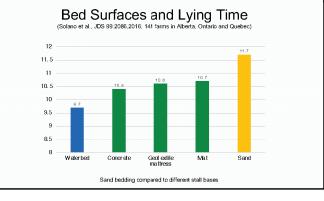

Sole Hemorrhage and Ulcer

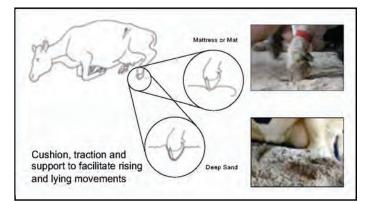


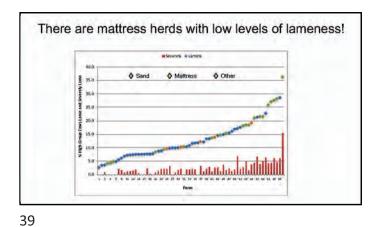


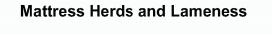


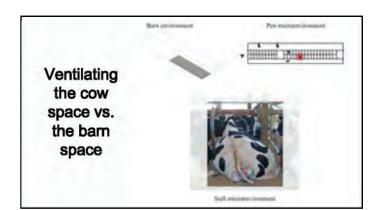


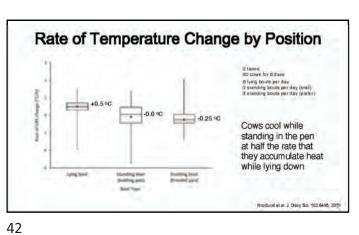


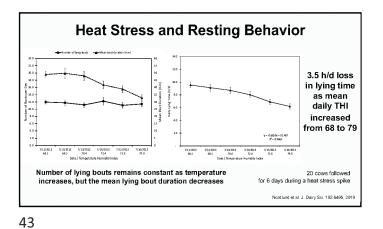

The Components of Cow Comfort

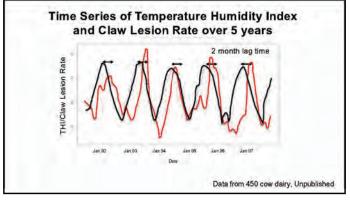


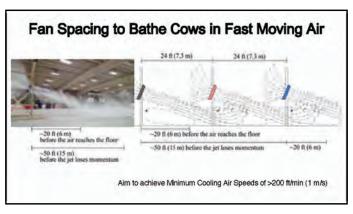


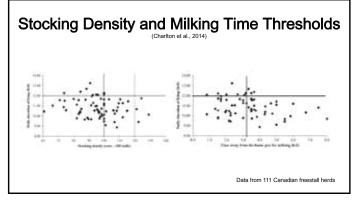


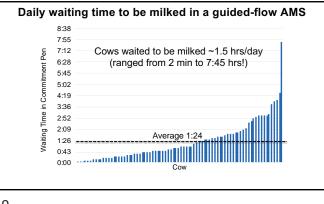


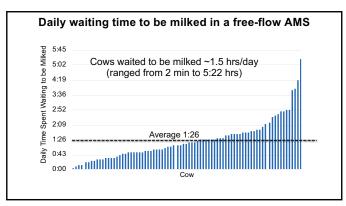



- Equal pressure for new cases of lameness between mattress and sand herds
- · Impact of sand is on reducing the chronicity of lameness!
- Mattress herd owners must:
- Have excellent stall design
- · Identify new cases of lameness and treat effectively
- Allow lame cows to recover on a bedded pack
- · Control infectious causes of lameness through effective footbathing
- Use sufficient bedding to reduce hock injury

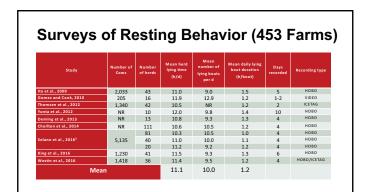


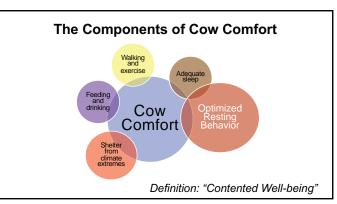




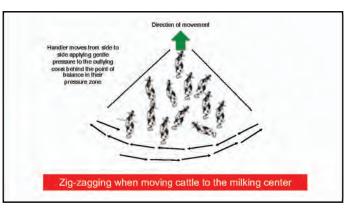


<section-header>




51

- Healthy, non-lame cows
- Deep bedded comfortable freestalls
- TMR fed
- >21 h/d in the pen
- 1 cow per stall
- Favorable resting area microenvironment
- Aim for mean lying times of 11.5 to 12.5 h/d, with mean lying bout durations of 1.2 h

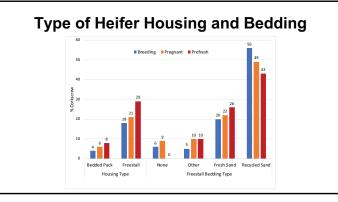


Planned Pasture Access

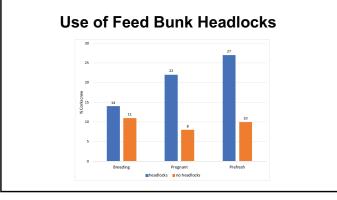
(Chapinal et al., 2013; Hernandez-Mendo et al., 2007; Popescu et al., 2013; Rouha-Mulleder, et al., 2009)

Some of the cows, some of the time

62

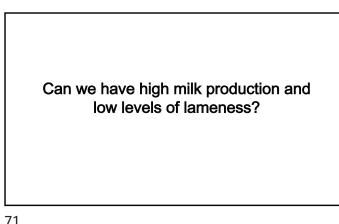

63

64

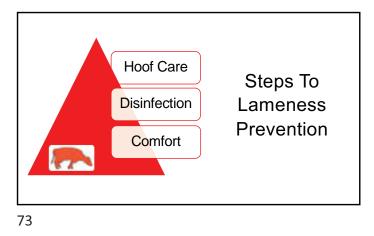


Permanent skeletal changes already present in heifers in early lactation

69



68



Heifer Housing Recommendations (Different from Cows!)

- 1. Bedded pack housing preferred where possible up to at least breeding age
- 2. Deep bed freestalls with organic bedding vs sand (avoid recycled sand!)
- 3. Mix slant bar and headlock feed bunks reduce headlock exposure
- 4. Improve the design of flooring finishes to suit heifers minigrooves?
- 5. Provide outdoor access feeding/pasture

Lameness Prevalence	e of 13%
Management Characteristic	% Herds or Mean
Deep loose bedded stalls (sand)	70
Headlocks at the feedbunk	70
Solid floor (vs slats)	97
Manual manure removal from alleys (vs scraper)	69
Rubber freestall alley flooring	3
Fans over resting area	96
Feedline soakers in the pen	79
Trim cows feet at least once per lactation	83
Footbath frequency (mean times per week)	4.5

AGP's soybean processing facility in Mason City, Iowa, one of four Midwest AminoPlus production facilities

TOP SELLING U.S. BYPASS SOYBEAN PROTEIN

With AminoPlus natural soy protein in your ration, you can maintain production on a lower protein ration, increase milk production, improve nitrogen efficiency, and reduce nitrogen excretion.

Calculate your profitability at AminoPlus.com.

© 2020 Ag Processing Inc a cooperative. All rights reserved.

Improving Lactation Performance Starts with GlucoBoost

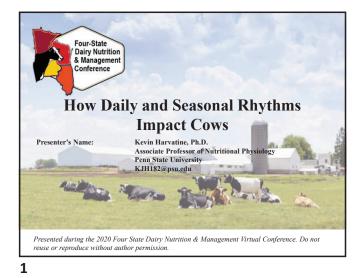
GlucoBoost is a high energy/ high protein feed ingredient that improves early lactation performance. Its proprietary formulation – including ammonium lactate – is a powerful source of energy that helps cows manage the period of negative energy balance.

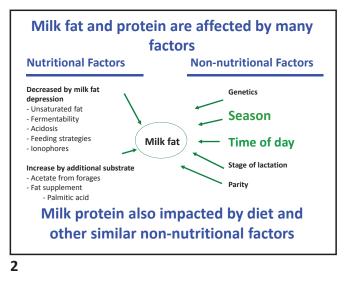
University research and extensive field application demonstrated that GlucoBoost:

Enhanced Early Lactation Performance – by increasing the cow's supply of two important precursors used to make up to 90% of the cow's glucose.

Improved Liver Function and Overall Health - while reducing metabolic disorders such as fatty liver and subclinical ketosis.

Increased Feed Efficiency by 10.7% - by producing the same amount of milk from less feed while also maintaining body weight, body condition score and milk composition and yield.


Learn how to start feeding GlucoBoost to your herd today. Call 920.845.5564



How Daily and Seasonal Rhythms Impact Cows

Kevin Harvatine, Ph.D. Associate Professor of Nutritional Physiology Penn State University KJH182@psu.edu

Daily rhythms coordinate metabolism with

changes across the day

Most processes in the body follow a 24 h cycle

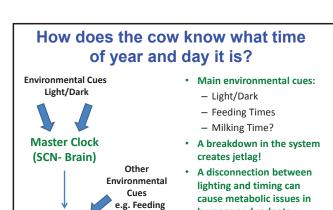
Allows the animal to anticipate changes and

Activity and Alertness
Nutrient Metabolism
Milk Synthesis

adapt before they occur

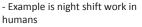
- Intake

Why??


4

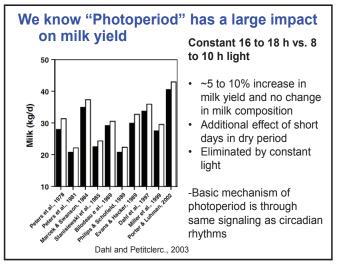
3

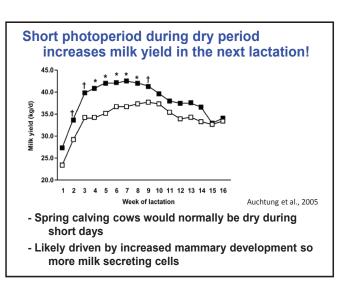
- There is a seasonal pattern of milk composition and yield driven by day length and change in day length
- There is a daily (circadian) pattern of intake that has a major impact on the rumen and there is a daily pattern of milk synthesis
- Considering seasonal and daily patterns provide additional avenues to optimize milk production and profitability

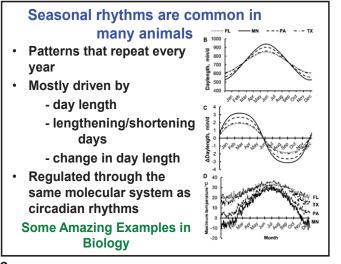


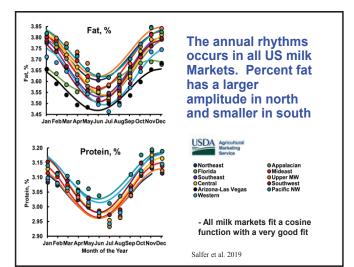
Times

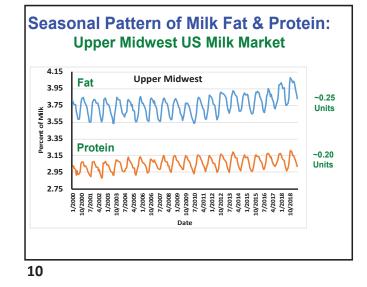
Peripheral

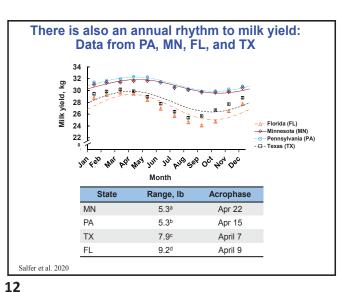

Clocks

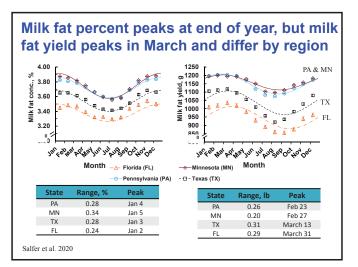


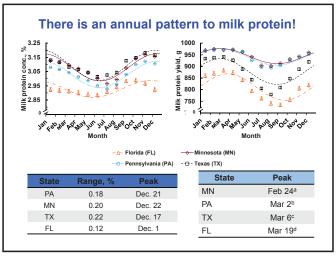

Asher, Schibler 2011



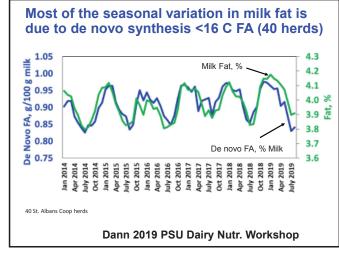




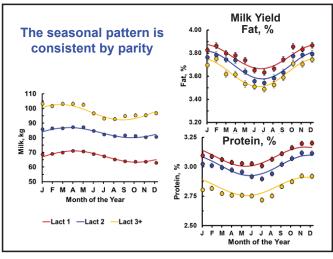




13

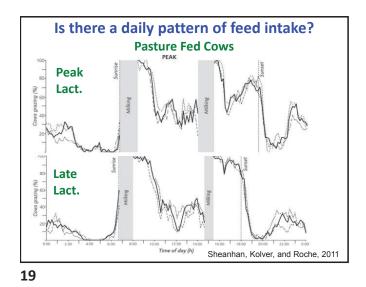


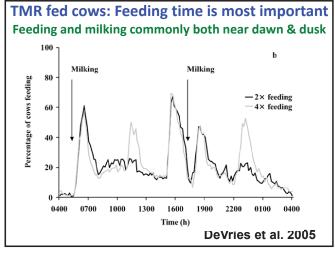
15

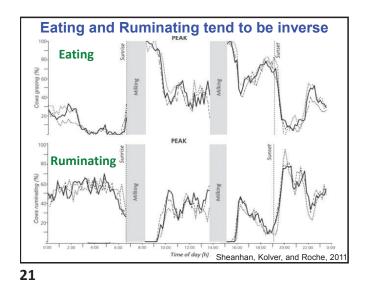

What does heat stress do to milk yield and composition?

Reference	MY, kg	Fat, %	Prot, %
Rungruang et al. 2014	-3.4	0.20	-0.10
Baumgard et al. 2011	-6.2	0.28	-0.12
Zimbelman et al. 2010	-0.1	-0.17	0.13
Wheelock et al. 2010	-9.6	0.60	-0.27
Rhoads et al. 2009	-10.6	0.34	-0.13
Schwartz et al. 2009	-10.1	0.06	-0.22

Generally a decrease in milk yield and milk
 protein percent and an increase in fat percent

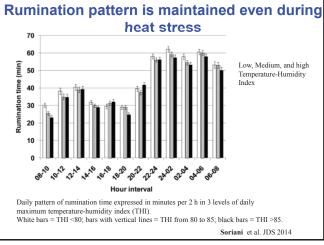

What do I think is going on?

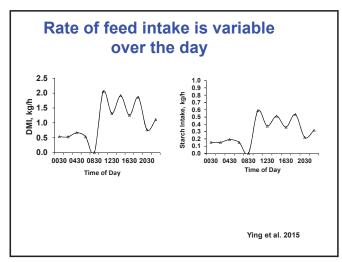

Two seasonal time-keepers:


- Milk composition is driven by lengthening and shortening days and aligns with the solstice
- Milk yield is driven by rate of change in day length and aligns with the equinox

Constant long days appears to be setting physiology of the spring equinox (increased milk yield and no change in composition)

- No data on how to manage out of this. Managing photoperiod probably best chance

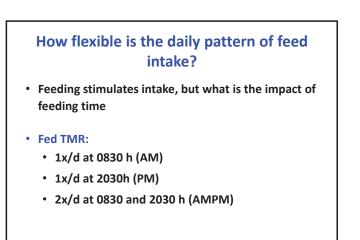




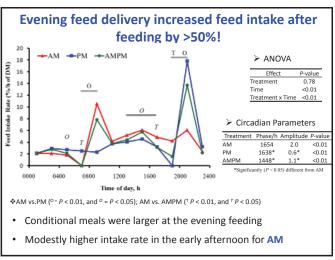
What is the impact of the daily pattern of intake?

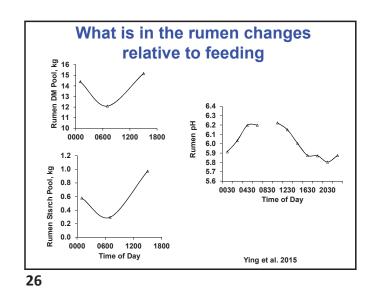
Intake =

Entrance of fermentable feed into the rumen for microbes to digest


Fermentable feed =

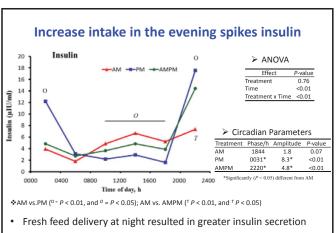
Synthesis of VFA's (acids) & microbial protein

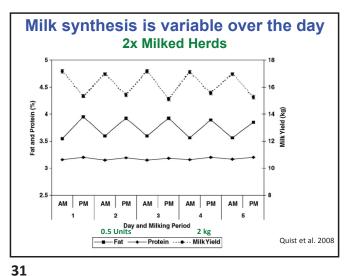

VFA's =

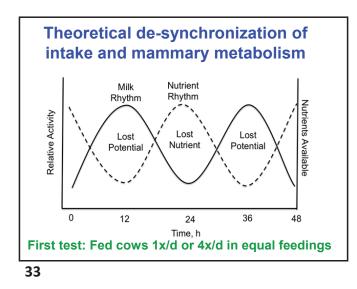

Acid load for rumen Nutrient supply for cow

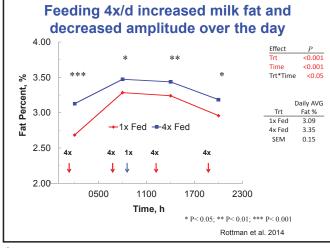
25

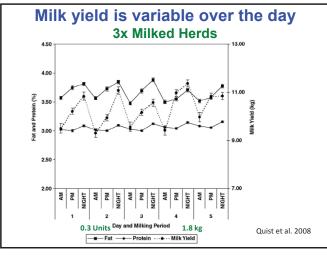
27

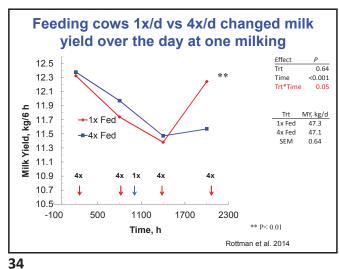


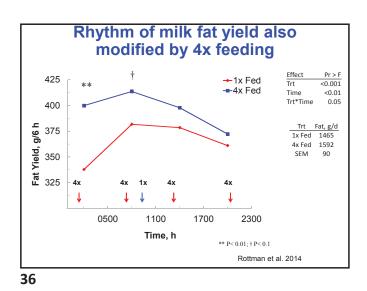

AM vs PM feeding had no effect of DMI or milk production

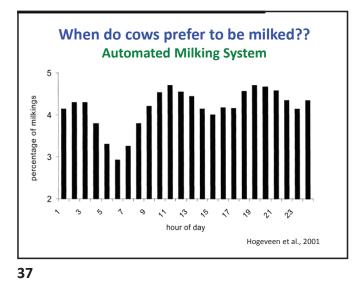

						P-value	
	Trea	Treatment Means				Cont	rasts
Item	AM	PM	AMPM	SE	Trt	AM vs. PM	AM vs. AMPM
Yield, lbs/d							
Milk	110.0	111.1	111.8	5.7	0.69	0.59	0.40
Milk fat	3.78	3.78	3.85	0.09	0.84	0.99	0.62
Milk protein	3.26	3.28	3.30	0.13	0.77	0.78	0.48
Milk composition	n, %						
Fat	3.51	3.49	3.48	0.15	0.90	0.83	0.66
Protein	2.97	2.95	2.96	0.07	0.80	0.52	0.69
DMI, lbs/d	71.7	69.1	70.2	2.0	0.40	0.18	0.44
Feed Efficiency	1.54	1.58	1.57	0.05	0.43	0.21	0.37

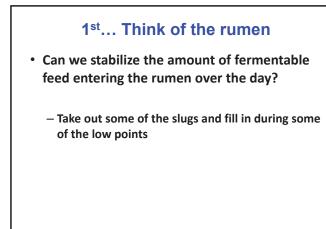





· Morning feeding moderately increased insulin in the early afternoon

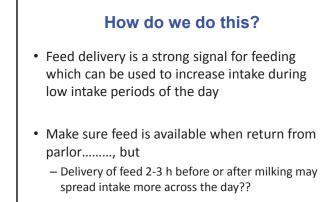






•

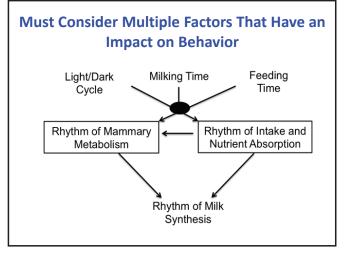
What else can we do?


- Feeding different diets across the day might also work
 - Feed same ration to entire herd in morning
 - Return to "top-off" high groups

How Can We Use This Information??

Think not just about the diet we are feeding, but how we are feeding it and how the cows are eating it!

We need to watch the cows and see what they are doing!


38

40

Interesting Call From the Field

- One pen of cows on a large farm consistently 0.3 to 0.5 units lower in milk fat than peer pen in another barn fed same diet
- Moved fifteen cows from the pen to another pen and they increased milk fat
- Normal MFD troubleshooting turned up no clues
- Cows being fed later in the day (11:30 AM)
- Switched milking and feeding order so feed delivered earlier and before milking.
- Milk fat increased equal to peer pen

Lab Members: Cesar Matamoros, Beckie Bomberger, Ala Ahmed Elzennary, and Rachel Walker. Previous Lab Members: Chengmin Li, Elle Andreen, Dr. Isaac Michel Baldin, L. Whitney Rottman, M Richie Shepardson, Andrew Clark, Dr	Salfer, Dr. Daniel Rico, Dr. Iutian Niu, Dr. Natalie Urrutia,
and Jackie Ying Disclosures	USDA United States National Institute Department of Food and
K.J. Harvatine's research in the past 10 year Agriculture and Food Research Initiative Cor 20723, 2015-67015-23358, 2016-68008-250 National Institute of Food and Agriculture [P] 2009-34281-20116 [PI Harvatine], Berg-Sch Novus International, PA Soybean Board, Ph Milk Specialties Global, Adisseo, Micronutrie Intl., and Penn State University. Harvatine h Global, a manufacturer of prilled saturated fa as a member of their science advisory board speaking honorariums from Elanco Animal H Virtus Nutrition, Chr Hansen, NDS, Nutreco, in the past three years.	mpetitive Grant No. 2010-65206- 125, and 2018-06991 from the USDA Harvatine], USDA Special Grant midt, Elanco Animal Health, BASF, ode Laboratories, Kemin International, ints Inc., Organix Recylcing, Insta-Pro ias consulted for Milk Specialties at supplements and Micronutrients Inc. Is. Harvatine has also received lealth, Novus International, Cargill,

45

Key Principles

- There is a daily (circadian) pattern of intake that has a major impact on the rumen
- There is a daily pattern of milk synthesis
- We need to manage the daily pattern of intake and our best tools for this are through feeding and milking schedules
- Don't be afraid to feed multiple diets per day, but be careful with late afternoon and evening feedings (early morning may be safer)

Make the Switch!

Learn why so many growers are switching to Alforex[™] varieties with Hi-Gest[®] alfalfa technology.

3

Hi-Gest Alfalfa TECHNOLOGY

More Milk

1 Higher Digestibility

- 5-10% increased rate of fiber digestion*
- 22% reduction in indigestible fiber at 240 hours (uNDF240)^{**}
- 3-5% more crude protein**

2

More Tonnage

Alforex varieties with Hi-Gest

If your ration contains a higher percentage of alfalfa you could expect **2.5 lbs. more milk per cow, per day.**¹ And while not every producer experiences this level of improvement, some producers report even better results.

Alforex Seeds Ready to bring higher digestibility, more tonnage and more milk to your farm? Visit us at www.alforexseeds.com or call us at 1-800-824-8585

The increased rate of ther depotion, extent of depotion and roude proton data was developed from oplicated research and on-fame training. During the 2015 growing associa Wierd Salem, Wind Woodand, CJ, the following commercial domaint, memi-dimmant and non-formatt allfalls varieties were compared heads to be head with Micros varieties with Hi-Gest allfalls technology for rate of depotion and present order proton and pr

Combs, D. 2015. Relationship of NDF digestibility to animal performance. Tri-State Dairy Nutrition Conference, 101-112. Retrieved from https://pdfs.semantischolar.org/5350/ f0a2cb916e74edf5f9cdb73f091e1c8280k.pdf.

CORTEVA "Trademarks of Dow AgroSciences, DuPont or Pioneer, and their affiliated companies or their respective owners. © 2020 Corteva

Your Mineral Solution Partner For Your

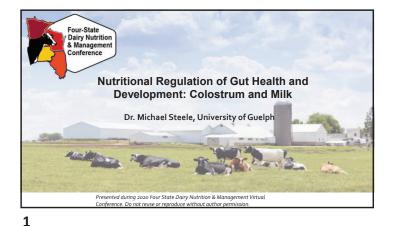
Animal Nutrition Needs

Our all-natural products include:

Calcium Sulfate • Calcium Carbonate Calcium Magnesium Carbonate

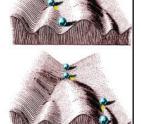
Call us today to place your order!

1 (800) 236 7737

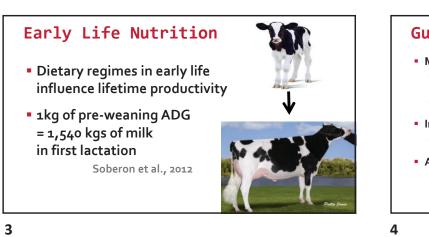

For *Superior* Hay and Silage www.isfglobal.com 1-800-497-4243

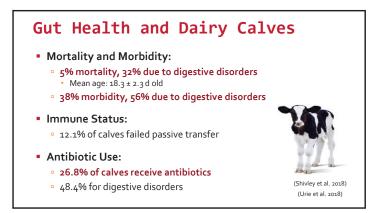
Nutritional Regulation of Gut Health and Development: Colostrum and Milk

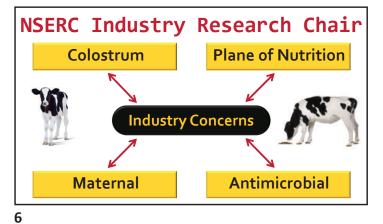
Dr. Michael Steele University of Guelph



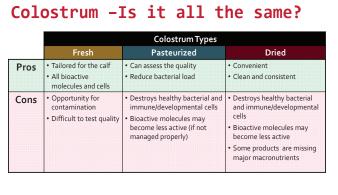
"Early Life Programming"


"...early adaptation to a stress or stimuli that permanently changes the physiology and metabolism of the organism and continues to be expressed even in the absence of the stimulus/stress that initiated them..."

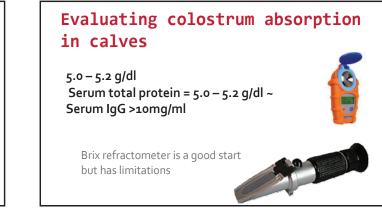

Patel and Srinivansan, 2002

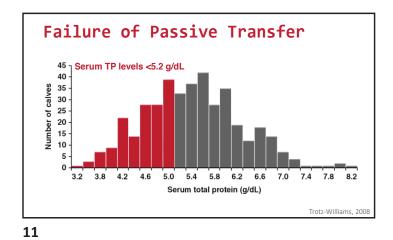

Adapted from Conrad's Waddington epigenetic landscape

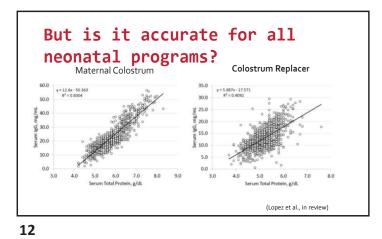
2

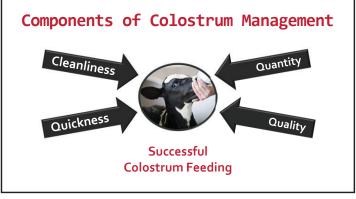


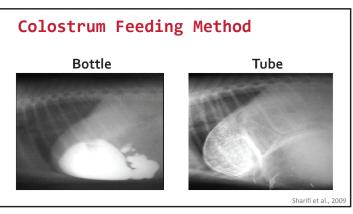
n 37 31 ADG, kg 0.80 1.03 * Age at conception, (months) 14.0 13.5 ns Survival through 2nd lact., (%) 75.7 87.1 * Milk yield through 2nd lact., (kg) 16,015 17,042 * Inadaquate colostrum intake	Colostrum Intake					
ADG, kg 0.80 1.03 * Age at conception, (months) 14.0 13.5 ns Survival through 2nd lact., (%) 75.7 87.1 * Milk yield through 2nd lact., (kg) 16,015 17,042 * Tradaquate colostrum intake						
Age at conception, (months) 14.0 13.5 ns Survival through 2nd lact., (%) 75.7 87.1 * Milk yield through 2nd lact., (kg) 16,015 17,042 * *Processins Proce	n	37	31			
Survival through 2nd lact., (%) 75.7 87.1 * Milk yield through 2nd lact., (kg) 16,015 17,042 * *Pro.osj: ns Pro.1 Inadaquate colostrum intake	ADG, kg	0.80	1.03 *			
Milk yield through 2nd lact., (kg) 16,015 17,042 * *Preasg ins Proat Inadaquate colostrum intake	Age at conception, (months)	14.0	13.5 ns			
*Pro.og; ns P>o.1	Survival through 2nd lact., (%)	75.7	87.1 *			
Inadaquate colostrum intake	Milk yield through 2nd lact., (kg)	16,015	17,042 *			
reduces lifetime production Faber et al., 20	*P<0.05; ns P>0.1 Faber et al., 2005					

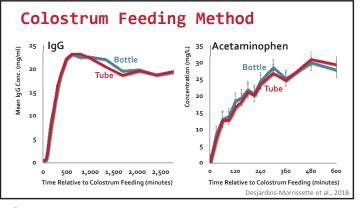

Failure in passive immune transfer...

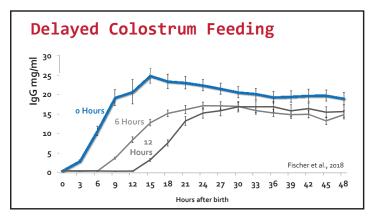

- Delayed age at first calving Waltner-Toews et al., 1986
- Decreased milk and fat production at first lactation Nocek et al., 1984; Robinson et al., 1988; Faber et al., 2005
- Decreased average daily gain to 180 days DeNise et al., 1989; Soberon et al., 2011
- Negatively impacts feed efficiency Soberon et al., 2011



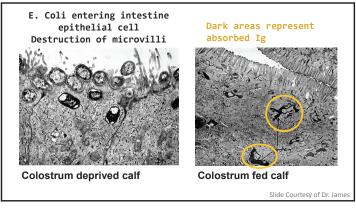

9

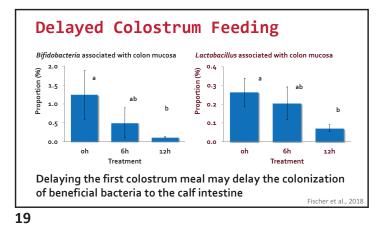


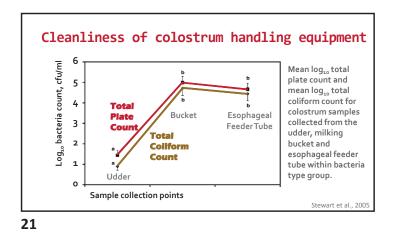


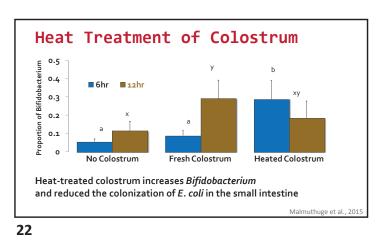


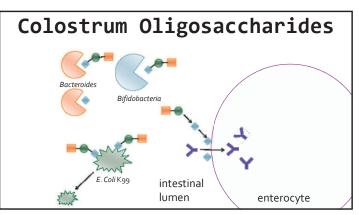
What's in	colos	strum?
Immunoglobulins	>100:1	immune function
Lactoferrin	>15:1	local immunity effect in gut
IGF-I	80:1	
IGF-II	20:1	
Epidermal growth factor	2:1	
Insulin	100:1	local gut effects
Interleukines	> 100:1	
Relaxin	19:1	reproductive development
Prolactin		little data
TGFα and TGFβ	> 100:1	
Leptin		hypotahlamic pituitary axis
Leucocytes		immune function
····,···		Slide Courtesy of Dr. VanAmburg

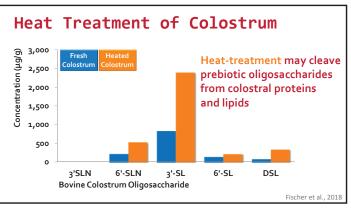




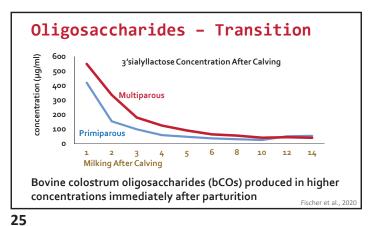





Bacterial Contamination of Colostrum Cut point is bacterial count < 100,000 cfu/ml


Total Bacterial Count	% of Samples ¹²	
< 100,000	54.8	× × ×
100,000 - 300,000	12.1	
300,000 - 500,000	6.3	Alela
500,000 - 1,000,000	9.9	100 450 AS 100 100
>1,000,000	16.9	TANALAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		Morill, 201

20



From Colostrum to Milk First Feeding Wk 1 Colostrum Milk First Feeding Transition Wk 1 Colostrum Milk State Milk 26 Milk

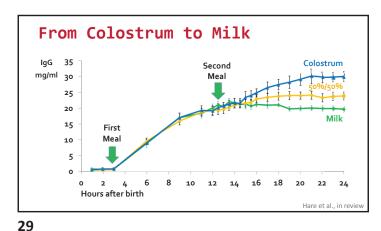
From Colostrum to Milk

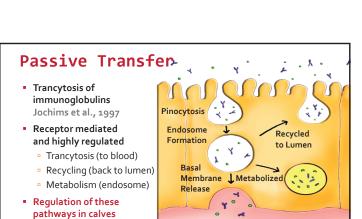
• 50% milk/ 50% colostrum (Transition)

Milk

Colostrum

Milk

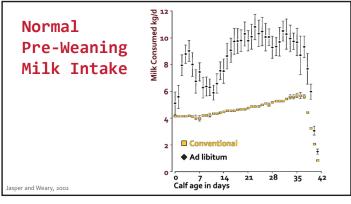

• All calves fed one meal of colostrum followed by:

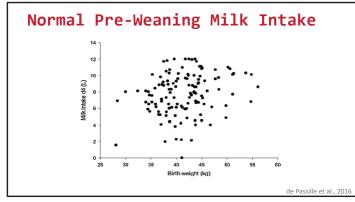

Pyo et al., 2020

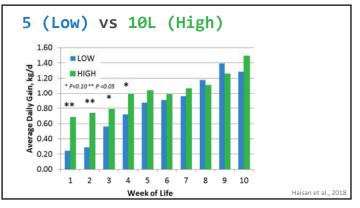
Colostrum

From Colostrum to Milk Colostrum Milking Mature Milk 4 Dry Matter % 24.5 19 16 15.5 15.3 Fat % 6.4 5.6 4.6 5 5 Protein % 8.5 6.2 4.8 13.3 5.4 Essential Amino Acids mΜ 390 230 190 140 Lactoferrin g/L 0.86 0.46 1.84 0.36 Insulin ua/L 65 16 8 35 Growth Hormone μg/L 1.5 0.5 Insulin-like growth factor I μg/L 310 195 105 62 Improved health status in calves fed transition milk Conneely et al., 201

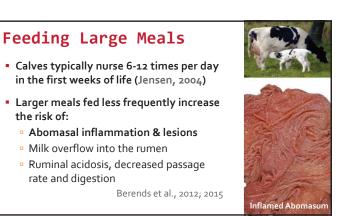
27



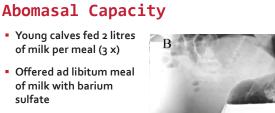

50%/50%



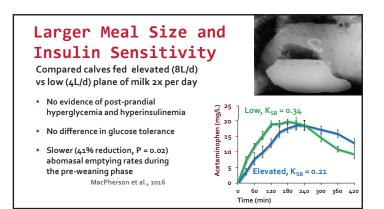
is unclear

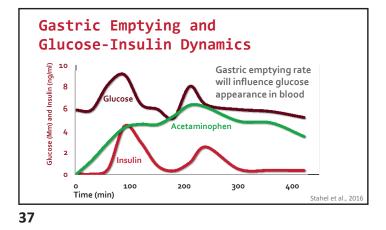


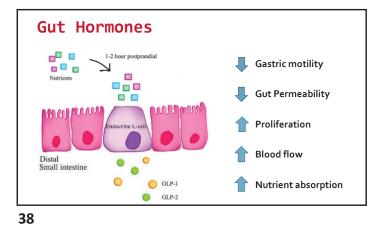
31

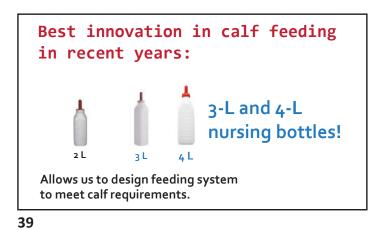


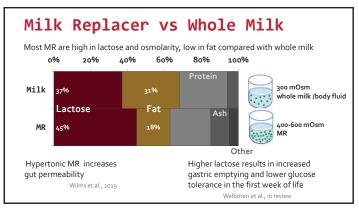
33






 Most calves drank more than 5 litres with no evidence or ruminal overflow





Amount of Milk Replacer/Milk Dry Matter Required to Meet Maintenance Requirements (kg/d) Temperature, °C BW kg 20 10 0 -10 -15 -20 -30 0.27 0.36 0.41 0.45 0.5 0.54 0.64 27 Milk Replacer/Milk 36 0.36 0.64 o.68 0.41 0.5 0.59 0.77 Dry Matter 0.82 0.91 0.45 0.5 0.59 0.73 0.77 45 Required (kg/d) o.68 o.86 0.91 55 0.5 0.59 0.77 1.05

Take Home Messages

- There are still some basic concepts in calf biology and nutrition that we do not understand
- No difference between tube vs. bottle feeding colostrum for passive transfer
- Delaying colostrum by six hours can impact passive transfer and gut microbiology
- Pasteurizing colostrum may help to improve calf gut health if managed properly

43

Take Home Messages

- An abrupt transition from colostrum to milk can compromise gut development
- Calves can consume large quantities of milk in early life when starter intake is depressed
- If feeding times per day is limited, the calf can regulate by decreasing abomasal emptying
- The environmental temperature has a large impact on milk feeding regimens

44

45

46

47

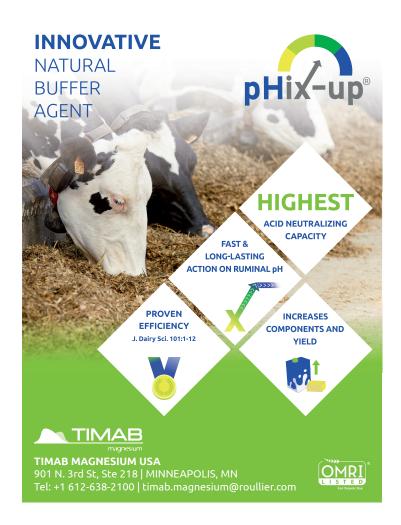
50

WE WEAR MANY HATS.

AND CUSTOMER SERVICE IS ALWAYS ONE OF THEM.

In these times of uncertainty, this hat is more important than ever. We're here to help and we're working - to support, provide stability, and offer confidence to carry you and your customers through to the other side. Whether you're 6 feet or 400 miles away, contact us and check out our resources:

ROCKRIVERLAB1
 ROCK RIVER LABORATORY, INC.
 ØFIELD_UPDATES

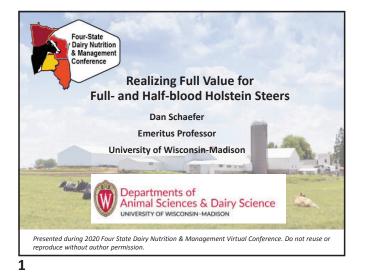


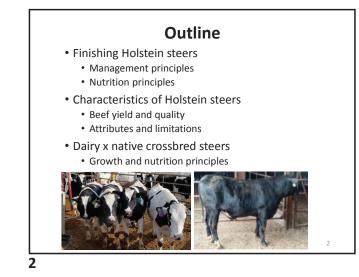
ROCKRIVERLAB.COM

REDUCE PROTEIN COSTS WITH QLF

QLF liquid supplements are superior carriers of urea or nonprotein nitrogen (NPN), making them a valuable tool to achieve your protein supplementation needs. With the recent shortages of other protein ingredients, such as distillers grains, NPN can help offset a significant portion of your protein needs. Natural protein is still an important component of the diet but achieving optimal rumen and performance efficiency is best achieved by incorporation both true and NPN sources of protein.

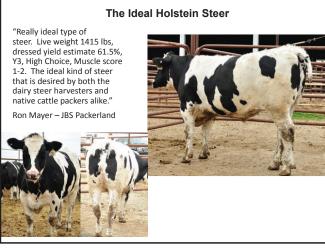
800.236.2345 | INFO@QLF.COM





Realizing Full Value for Full- and Half-blood Holstein Steers

Dan Schaefer Emeritus Professor University of Wisconsin-Madison




Assumptions	
Calving interval	13.1 months
Dairy calf component of U.S. calf crop	26%
Heifer component of dairy calf crop	53%
Dairy calf death loss	8.1%
Dairy feeder cattle deaths and realizers	3.77%
Holstein component of dairy cow herd	86%
Fed Holstein carcasses, USDA Prime	12.9% ¹
Results of Calculations	
Holstein steer component of fed steer & heifer supply	13.8%
Holstein steer component of USDA Prime carcasses	33%
¹ Native carcasses, 2.1% Prime (2016)	(Ct

- JBS Green Bay, WI; Plainwell, MI; Tolleson, AZ; Omaha, NE; Grand Island, NE
- Cargill Wyalusing, PA; Fresno, CA; Schuyler, NE
- American Foods Group Green Bay, WI

4

- Only two competing Holstein steer harvesters in Upper Midwest
 - JBS
 - Prefers calf-fed steers up to 1550 lbs
 - American Foods Group
 - Prefers 1400 lbs and heavier
- Target finished weight for Holstein steers is 1400-1550 lbs for competitive bidding
 - 840-930 lb carcass
 - Discounts to cow beef price for stags, Standards (silage-fed), and dark cutters

6

Special Considerations for the Holstein Bull Calf

- Feed colostrum to bull calves as it is fed to heifer calves
- Purchase calves with colostrum feeding as a stipulation
- Castration
 - Stags: expensive to re-castrate, or steep carcass discounts
 Simple math count to two and then the job is done!
- Dehorn to prevent bruising

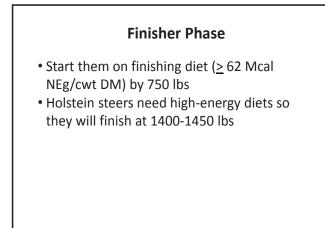
7

Weaning and Post-weaning

- Colostrum shortage, milk replacer, and housing environment are challenges to calf respiratory health
- Age at weaning? Typically, 7-8 wks.
 - "Wean early (28 to 42 d) and promote feed DM intake to take advantage of the efficient growth by young calf." – Hugh Chester-Jones, Univ. Minn.
- Growth target for the nursery phase is to double initial BW by 56 d of age with hip height growth of 4 inches or more
- Provide a high energy diet (60 Mcal NEg/cwt DM) with 18% crude protein

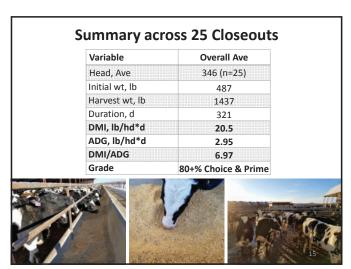
8

Grower Phase – Role for Forages?


- A grower phase is not needed for Holstein steers.
 Pastures, silage or hay can be included for middle weight (400-750 lb) steers to accommodate cropping system.
- Subsequently, reduce forage component to achieve $\geq\!\!62$ Mcal NEg/cwt DM

9

10


Net Energy_{gain} (NEg) Concentrations in Feedlot Diets Equivalencies between corn silage:high-moisture corn ratios and net energy for gain concentrations^{1, 2}. Corn silage Corn, high-moisture Net Energy_{gain}

Proportion (%)	Proportion (%)	Mcal/lb
10	60	0.65
15	55	0.64
20	50	0.63
25	45	0.61
30	40	0.60
40	30	0.57
50	20	0.54
odified wet distillers grain IEg values for diet ingredie rn grain, 0.71 Mcal/Ib; and	as follows: corn silage proportion; h with solubles, 25%; and supplemen ints (NASEM, 2016) were corn silage modified wet corn distillers grain w to be only minerals, vitamins and a	t, 5%. e, 0.44 Mcal/lb; high-moistu vith solubles, 0.74 Mcal/lb.

Consistency of Holstein Steer Population

- Breed has an inbreeding coefficient of 6-7%
- Implications of this genetic homogeneity are both positive and negative.
- The following closeout results display consistency.

13

Consistent Holstein Steer

Performance

• Note the consistency of DMI, ADG, DMI/ADG (feed

 Dead and culled steers are a greater percentage than one would expect from similar native steers, and this is probably due to early calfhood mgmt

conversion efficiency) and Choice/Prime

percentage.

and inbreeding.

15

Commercial Diets Self-fed (as-fed basis)

Ingredient	Diet 1	Diet 2
Corn, cracked, %	67	65
Corn gluten feed, pelleted %	12	-
Distillers grain, %	15	30
Balancer pellets, %	6	5
No inclusion of Tylan, Optaflexx, molasses, probiotics or other non-nutritional additives. No forage/roughage provided, except corn stalk bedding.		

14

			Group					
	1	2	3	4	5	Mean	S.dev.	C.V.
Head, n	294	390	114	360	534	338		
Implants ^a	E+FO	E+IS	E+FO	E+FO	E+FO			
Housing	Bedded Confine ment	Outside lots with sheds	Outside lots with sheds	Outside lots with sheds	Outside lots with sheds			
Begin wt, lb	565	593	594	610	541	581	27.4	4.7%
Kill wt, lb	1461	1458	1426	1440	1442	1445	14.3	1.0%
Duration, d	323.5	293	305	307	315	309	11	3.7%
DMI, lb/hd*d	20.7	21.0	21.8	20.9	21.0	21.1	0.4	2.0%
ADG, lb/hd*d	2.77	2.95	2.73	2.7	2.86	2.80	0.10	3.7%
DMI/ADG	7.48	7.11	8.00	7.76	7.34	7.54	0.35	4.6%
Death & Culls, %	4.85	2.74	5.0	2.7	2.9	3.64	1.18	32%
Choice & Prime, %	-	78.33	81.25	79.75	80.01	79.84	1.20	1.5%

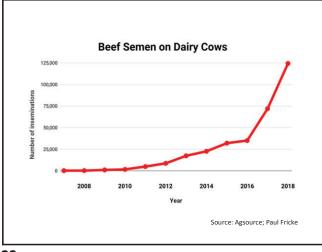
16

Holstein steers are <u>more tolerant of elevated temperatures</u>, <u>but less tolerant of</u> <u>freezing temperatures</u> than native steers, which may be because of their thinner hide and diminished subcutaneous fat cover. Insulation provided by dry bedding is essential in cold conditions. (Ramthun Farms, West Bend, WI)

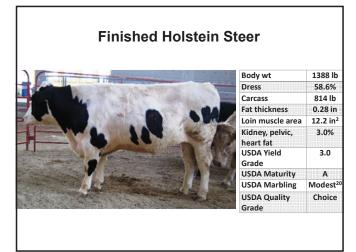
Yield Characteristics of Holstein Steer Carcasses

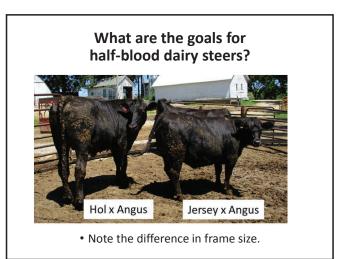
- Lower dressing percentage than native carcasses
 - Due to increased proportion of gut, reduced muscling score, less subcutaneous fat, increased liver size, increased proportion of abdominal fat
 - However, hide as proportion of body weight is less
- Lower muscle:bone ratio
 - Loin muscle of the Holstein is stretched over a longer skeleton, resulting in a smaller REA (Nour et al., 1981)

19


Quality of Holstein Beef

- Holstein steers have had higher marbling scores than the U.S. native fed cattle population
 - In recent years, there is less difference due to marked improvement in marbling scores within native population
- Holstein loin has greater drip loss but responds to vitamin E supplementation, if there is a large differential
- No breed difference in taste panel or tenderness attributes for Holstein vs Angus


20



21

_____ 25

Certified Angus Beef (as stds apply to dairy-beef crossbreds)

- Predominantly (51%) solid black hair coat or <u>AngusSource®</u> genetic verification
- Modest or higher marbling (average and high Choice and Prime)
- Superior muscling (restricts influence of dairy cattle)
- 10- to 16-square-inch ribeye area
- 1,050-pound hot carcass weight or less

https://www.certifiedangusbeef.com/brand/specs.php

26

Traits of Importance

- Marbling
 - Highly heritable
- Muscling (muscle:bone ratio)
 - Medium to high heritability
- Respiratory health

• Hybrid vigor

- Not a consideration for marbling or muscling
- Possibly a benefit for respiratory health

27

Beef Sire Selection Criteria for Holstein Matings

- Black hair coat homozygous
- Polled homozygous
- Frame size 5 to 5.5 (on a scale of 1-9)
- Muscling ribeye area in top 20% of breed; emphasize muscle to bone ratio
- Marbling top 20% of breed
- Calving ease direct top 50% of breed
- Conception rate not known; beef = Holstein; sorted < non-sorted
- An index designed for these matings?

28

Beef Sire Selection Criteria for <u>Jersey</u> Matings

- Black hair coat homozygous
- Polled homozygous
- Frame size 6 to 6.5 (on a scale of 1-9)
- Muscling ribeye area in top 20% of breed; emphasize muscle to bone ratio
- Marbling top 20% of breed
- Calving ease direct top 50% of breed
- Conception rate not known; sorted < non-sorted
- There is no existing index designed for these matings

Cattle Performance Estimates

Enterprise	ADG lb/d	Feed:Gain	Days on Feed
Holstein, birth to 400	2.0	3.5	150
Dairy x beef, birth to 400	2.0	3.5	150
Holstein 400- 1450	2.9	7.2	362
Dairy x beef 400-1400	3.2	6.9	312

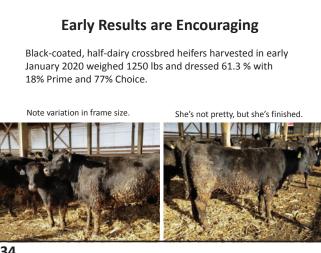
There are no publicly available reports of half-blood Holstein steer feedlot performance.

	Holstein	Half-Holstein	Native
Diet NEg (Mcal/cwt DM)	62-65	62-65	62-65
Start finishing by, Ib	750	850	950
Harvest-ready, lb	1450	1375	1300
Daily gain, lb/day	2.9	3.2	3.5
Days to finish	240	165	100

Mineral	NRC Recomm.	TM Premix	Premix/Recomm
	mg/kg	mg/kg	
Ca		230,000	
Fe	50	10,000	200
Mn	20	40,000	2,000
Zn	30	60,000	2,000
Со	0.15	300	2,000
Cu	10	20,000	2,000
1	0.5	1,000	2,000
Se	0.1	200	2,000

33

Summary


- Holstein steers have deficiencies
 - · Respiratory health, growth rate, feed conversion, dressing percentage
 - · Market understands these deficiencies and knows how to value them
 - · Despite deficiencies, growth, carcass yield and quality are consistent
 - · Supply of these cattle numbers hundreds of thousands
 - Mature market
- · For Holstein x beef bull calf, easiest profit is realized by
- selling the 100-lb calf. • This market will become more discriminating as finishers and packers gain experience with these bull calves.
 - Immature market

Nutritional Recommendations

Nutrient	Growing	Finishing		
	%, DN	1 basis		
Crude protein	14	13		
Calcium	0.65			
Phosphorus	0.30			
Potassium	0.60			
Sulfur	0.15-0.40			
Magnesium	0.10			
Salt	0.25			
Trace mineral	0.05			
pmx				
Vitamins	IU/lb DM			
A	1,000			
D	125			
E	15			

32

34

• The cash/auction market for feeder and finished cattle is not offering a profit incentive. • The profit incentive is available for large volume forward contracts involving finished (and probably feeder) cattle. · Allows for better control of variability via mating, sorting and finishing decisions

Market Comments

Interpretation

- Market for Holstein bull calves will persist as long as there is a
 - market demand
 - packer(s) with a market for Holstein beef
 - packer profit in the carcass cut-out value
- When the supply of Holstein bull calves shrinks relative to market demand,
 - market will induce more Holstein beef production
 - price incentive for forward-contracted Holstein steers & heifers
 - price incentive for newborn Holstein bull and heifer calves

L 37

Take Home Message

- Health, growth, cost of production, and carcass value of Holstein steers have become consistently predictable.
- Much will need to be learned about dairy x native crossbreds so that the price premium in these commodity calves can be preserved.

